Skip to main content

Advertisement

Log in

Densification Behavior and Influence of Building Direction on High Anisotropy in Selective Laser Melting of High-Strength 18Ni-Co-Mo-Ti Maraging Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical properties, physical properties and electrochemical behavior of metal components produced by selective laser melting can be influenced by the relative density and building direction. To this end, the optimization of the building process was conducted by identifying the influence of process parameters on the relative density and determining the ideal combination of parameters using the Box–Behnken design response surface methodology to achieve a relative density of 99.303 pct. With the ideal process parameters, material strength, thermal, and electrochemical performance were evaluated in a series of experiments. Anisotropic characteristics were displayed due to the differences in build-direction, microstructural features, and phase composition. The 0 deg possessed the highest tensile strength measured to be 1263.03 ± 8.71 MPa, while the 45 deg demonstrated the highest ductility with an elongation of 13.21 ± 0.34 pct. Thermal expansion was governed by the heat treatment process, such that anisotropic traits were eliminated after solution treatment. Strip melt tracks on the X–Y plane differed from the strip and arcuate melt tracks observed in the X–Z and Y–Z planes, leading to significant deficiencies in electrochemical reactance with an open circuit potential of − 645.8 mV in comparison to the latter measured at − 397.7 and − 396.7 mV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Dzugan, M. Seifi, R. Prochazka, M. Rund, P. Podany, P. Konopik, and J.J. Lewandowski: Mater. Charact., 2018, vol. 143, pp. 94–109.

    CAS  Google Scholar 

  2. K. Kunze, T. Etter, J. Grässlin, and V. Shklover: Mater. Sci. Eng. A, 2014, vol. 620, pp. 213–22.

    CAS  Google Scholar 

  3. L. Thijs, M.L. Montero-Sistiaga, R. Wauthle, Q. Xie, J.P. Kruth, and J. Van Humbeeck: Acta Mater., 2013, vol. 61, pp. 4657–68.

    CAS  Google Scholar 

  4. M. Todai, T. Nakano, T. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda, and M. Takeyama: Addit. Manuf., 2017, vol. 13, pp. 61–70.

    CAS  Google Scholar 

  5. N. Shayesteh-Moghaddam, S.E. Saghaian, A. Amerinatanzi, H. Ibrahim, P. Li, G.P. Toker, H.E. Karaca, and M. Elahinia: Mater. Sci. Eng. A, 2018, vol. 724, pp. 220–30.

    Google Scholar 

  6. B. Mooney, K.I. Kourousis, R. Raghavendra, and D. Agius: Mater. Sci. Eng. A, 2019, vol. 745, pp. 115–25.

    CAS  Google Scholar 

  7. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, and C. Tuck: Addit. Manuf., 2014, vol. 1, pp. 77–86.

    Google Scholar 

  8. Y. Bai, Y. Yang, Z. Xiao, M. Zhang, and D. Wang: Mater. Des., 2018, vol. 140, pp. 257–66.

    CAS  Google Scholar 

  9. A.B. Spierings, M. Schneider, and R. Eggenberger: Rapid Prototyp. J., 2011, vol. 17, pp. 380–6.

    Google Scholar 

  10. R. Vinayagamoorthy: Mater. Manuf. Process., 2017, vol. 32, pp. 645–53.

    CAS  Google Scholar 

  11. S. Guan, F. Deng, S.Q. Huang, S.Y. Liu, L.X. Ai, and P.Y. She: Ultrason. Sonochem., 2017, vol. 38, pp. 9–18.

    CAS  Google Scholar 

  12. D. Gu: in Laser Surface Engineering, Elsevier, Amsterdam, 2015, pp. 163–80.

    Google Scholar 

  13. 13 D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu, and C. Song: Mater. Des., 2017, vol. 117, pp. 121–30.

    CAS  Google Scholar 

  14. V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, F. Coste, I. Koutiri, and R. Fabbro: J. Mater. Process. Technol., 2018, vol. 251, pp. 376–86.

    CAS  Google Scholar 

  15. S.A. Khairallah, A.T. Anderson, A.M. Rubenchik, and W.E. King: Addit. Manuf. Handb. Prod. Dev. Def. Ind., 2017, vol. 108, pp. 613–28.

    Google Scholar 

  16. D.K. Do and P. Li: Virtual Phys. Prototyp., 2016, vol. 11, pp. 41–7.

    Google Scholar 

  17. Y. Pupo, J. Delgado, L. Serenó, and J. Ciurana: Procedia Eng., 2013, vol. 63, pp. 370–8.

    CAS  Google Scholar 

  18. R. Li, J. Liu, Y. Shi, L. Wang, and W. Jiang: Int. J. Adv. Manuf. Technol., 2012, vol. 59, pp. 1025–35.

    Google Scholar 

  19. B. Zhang, L. Dembinski, and C. Coddet: Mater. Sci. Eng. A, 2013, vol. 584, pp. 21–31.

    CAS  Google Scholar 

  20. D. Gu and H. Chen: Mater. Sci. Eng. A, 2018, vol. 725, pp. 419–27.

    CAS  Google Scholar 

  21. I. Tolosa, F. Garciandía, F. Zubiri, F. Zapirain, and A. Esnaola: Int. J. Adv. Manuf. Technol., 2010, vol. 51, pp. 639–47.

    Google Scholar 

  22. J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty: Acta Mater., 2016, vol. 115, pp. 285–94.

    CAS  Google Scholar 

  23. E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, and T. Kurzynowski: Mater. Sci. Eng. A, 2015, vol. 639, pp. 647–55.

    CAS  Google Scholar 

  24. W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng, and S. Yusheng: J. Mater. Process. Technol., 2014, vol. 214, pp. 2660–7.

    CAS  Google Scholar 

  25. J.J.S. Dilip, G.D.J. Ram, T.L. Starr, and B. Stucker: Addit. Manuf., 2017, vol. 13, pp. 49–60.

    CAS  Google Scholar 

  26. E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato: J. Mater. Process. Technol., 2017, vol. 249, pp. 255–63.

    CAS  Google Scholar 

  27. Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen: J. Nucl. Mater., 2016, vol. 470, pp. 170–8.

    CAS  Google Scholar 

  28. R. Casati, J. Lemke, and M. Vedani: J. Mater. Sci. Technol., 2016, vol. 32, pp. 738–44.

    CAS  Google Scholar 

  29. Y. Bai, D. Wang, Y. Yang, and H. Wang: Mater. Sci. Eng. A, 2019, vol. 760, pp. 105–17.

    CAS  Google Scholar 

  30. H. Rao, S. Giet, K. Yang, X. Wu, and C.H.J. Davies: Mater. Des., 2016, vol. 109, pp. 334–46.

    CAS  Google Scholar 

  31. W. Yan, Y. Qian, W. Ge, S. Lin, W.K. Liu, F. Lin, and G.J. Wagner: Mater. Des., 2018, vol. 141, pp. 210–9.

    Google Scholar 

  32. C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, and P.D. Lee: Nat. Commun., 2018, vol. 9, pp. 1–9.

    Google Scholar 

  33. M.W. Wu, P.H. Lai, and J.K. Chen: Mater. Sci. Eng. A, 2016, vol. 650, pp. 295–9.

    CAS  Google Scholar 

  34. A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, and L. Bian: Int. J. Fatigue, 2017, vol. 94, pp. 218–35.

    CAS  Google Scholar 

  35. T. Boegelein, S.N. Dryepondt, A. Pandey, K. Dawson, and G.J. Tatlock: Acta Mater., 2015, vol. 87, pp. 201–15.

    CAS  Google Scholar 

  36. H. Li, K. Gai, L. He, C. Zhang, H. Cui, and M. Li: Mater. Des., 2016, vol. 92, pp. 731–41.

    CAS  Google Scholar 

  37. A. Takaichi, T Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, and T. Hanawa: J. Mech. Behav. Biomed. Mater., 2013, vol. 21, pp. 67–76.

    CAS  Google Scholar 

  38. Z.W. Chen, M.A.L. Phan, and K. Darvish: J. Mater. Sci., 2017, vol. 52, pp. 7415–27.

    CAS  Google Scholar 

  39. A. Bojack, L. Zhao, P.F. Morris, and J. Sietsma: Mater. Charact., 2012, vol. 71, pp. 77–86.

    CAS  Google Scholar 

  40. L.G. De Carvalho, M.S. Andrade, R.L. Plaut, F.M. Souza, and A.F. Padilha: Mater. Res., 2013, vol. 16, pp. 740–4.

    Google Scholar 

  41. A.G. Reis, D.A.P. Reis, A.J. Abdalla, J. Otubo, and H.R.Z. Sandim: IOP Conf. Ser. Mater. Sci. Eng., https://doi.org/10.1088/1757-899x/97/1/012006.

  42. R. Kapoor, L. Kumar, and I.S. Batra: Mater. Sci. Eng. A, 2003, vol. 352, pp. 318–24.

    Google Scholar 

  43. S. Wei, G. Wang, L. Wang, and Y. Rong: Mater. Des., 2018, vol. 137, pp. 56–67.

    CAS  Google Scholar 

  44. F.F. Conde, J.D. Escobar, J.P. Oliveira, M. Béreš, A.L. Jardini, W.W. Bose, and J.A. Avila: Mater. Sci. Eng. A, 2019, vol. 758, pp. 192–201.

    CAS  Google Scholar 

  45. S. Siddique, M. Imran, M. Rauer, M. Kaloudis, E. Wycisk, C. Emmelmann, and F. Walther: Mater. Des., 2015, vol. 83, pp. 661–9.

    Google Scholar 

  46. R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou, M.D. Sangid, and A.D. Rollett: Mater. Res. Lett., 2017, vol. 5, pp. 516–25.

    CAS  Google Scholar 

  47. L.Y. Chen, J.C. Huang, C.H. Lin, C.T. Pan, S.Y. Chen, T.L. Yang, D.Y. Lin, H.K. Lin, and J.S.C. Jang: Mater. Sci. Eng. A, 2017, vol. 682, pp. 389–95.

    CAS  Google Scholar 

  48. N. Dai, L.C. Zhang, J. Zhang, X. Zhang, Q. Ni, Y. Chen, M. Wu, and C. Yang: Corros. Sci., 2016, vol. 111, pp. 703–10.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Singapore Ministry of Education (Project Nos.: MOE2018-T2-1-140 and R-265-000-686-114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 2, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Lee, Y.J., Li, C. et al. Densification Behavior and Influence of Building Direction on High Anisotropy in Selective Laser Melting of High-Strength 18Ni-Co-Mo-Ti Maraging Steel. Metall Mater Trans A 51, 5861–5879 (2020). https://doi.org/10.1007/s11661-020-05978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05978-9

Navigation