Skip to main content
Log in

Ferromagnetic Bismuth-Substituted CeO2 Nanostructures and Prevalence of Antiferromagnetic Clusters

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Bismuth-substituted CeO2 (Bi0.05Ce0.95O2) nanostructured material have displayed room temperature ferromagnetic behavior. The substitution of Ce ions with Bi3+ ions decreased the saturation magnetization (MS) value of CeO2. UV-Vis and photoluminescence spectroscopic analyses revealed the occurrence of defect states i.e. surface oxygen vacancies in the sample, which facilitated ferromagnetic interactions in the Bi-substituted CeO2 nanostructures. Further, the clusters in the sample could provide antiferromagnetic interaction amongst ions, which reduced the MS value of CeO2. The clusters in the annealed sample was substantiated from its ZFC/FC curve. X-ray photoelectron spectroscopy analysis revealed the presence of Bi3+, Ce3+, and Ce4+ ions in the sample. High-resolution transmission electron microscopy (HRTEM) images suggested the spherical and rod-shaped morphology for the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li, P., Chen, X., Li, Y., Schwank, W.J.: A review on oxygen storage capacity of CeO2-based materials: influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catal. Today. 327, 90–115 (2019)

    Article  Google Scholar 

  2. Melchionna, M., Fornasiero, P.: The role of ceria-based nanostructured materials in energy applications. Mater. Today. 17, 349–357 (2014)

    Article  Google Scholar 

  3. Andreescu, D., Bulbul, G., Özel, R.E., Hayat, A., Sardesai, N., Andreescu, S.: Applications and implications of nanoceria reactivity: measurement tools and environmental impact. Environ. Sci. Nano. 1, 445–458 (2014)

    Article  Google Scholar 

  4. Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature. 430, 630–630 (2004)

    Article  ADS  Google Scholar 

  5. Zhang, W., Li, H., Firby, C.J., Al-Hussein, M., Elezzabi, A.Y.: Oxygen-vacancy-tunable electrochemical properties of electrodeposited molybdenum oxide films. ACS Appl. Mater. Interfaces. 11, 20378–20385 (2019)

    Article  Google Scholar 

  6. Zhao, Q., Fu, L., Jiang, D., Ouyang, J., Hu, Y., Yang, H., Xi, Y.: Nanoclay-modulated oxygen vacancies of metal oxide. Commun. Chem. 2, 11 (2019)

    Article  Google Scholar 

  7. Li, Q.H., Wei, L., Xi, Y.R., Jiang, F., Zhou, T., Hu, G.X., Ji, J., Chen, Y.X., Liu, G.L., Yan, S.S., Mei, L.M.: Effects of oxygen vacancy on the electrical and magnetic properties of anatase Fe0.05Ti0.95O2−δ films. J. Alloys Compd. 574, 67–70 (2013)

    Article  Google Scholar 

  8. Trovarelli, A.: Catalytic properties of ceria and CeO2 -containing materials. Catal. Rev. 38, 439–520 (1996)

    Article  Google Scholar 

  9. Hezam, A., Namratha, K., Drmosh, Q.A., Ponnamma, D., Wang, J., Prasad, S., Ahamed, M., Cheng, C., Byrappa, K.: CeO2 nanostructures enriched with oxygen vacancies for photocatalytic CO2 reduction. ACS Appl. Nano Mater. 3, 138–148 (2020)

    Article  Google Scholar 

  10. Coey, M., Ackland, K., Venkatesan, M., Sen, S.: Collective magnetic response of CeO2 nanoparticles. Nat. Phys. 12, 694–699 (2016)

    Article  Google Scholar 

  11. Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B. 74, 161306 (2006)

    Article  ADS  Google Scholar 

  12. Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    Article  ADS  Google Scholar 

  13. Paunović, N., Dohčević-Mitrović, Z., Scurtu, R., Askrabić, S., Prekajski, M., Matović, B., Popović, Z.V.: Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals. Nanoscale. 4, 5469–5476 (2012)

    Article  ADS  Google Scholar 

  14. Tiwari, A., Bhosle, V.M., Ramachandran, S., Sudhakar, N., Narayan, J., Budak, S., Gupta, A.: Ferromagnetism in Co doped CeO2: observation of a giant magnetic moment with a high Curie temperature. Appl. Phys. Lett. 88, 142511 (2006)

    Article  ADS  Google Scholar 

  15. Wang, Z.-L., Li, G.-R., Liang, J.-H., Tong, Y.-X.: Tuning magnetic properties of CeO2 by Fe doping via an electrochemical deposition route. Chem. Phys. Chem. 12, 166–171 (2011)

    Article  Google Scholar 

  16. Thurber, A., Reddy, K.M., Shutthanandan, V., Engelhard, M.H., Wang, C., Hays, J., Punnoose, A.: Ferromagnetism in chemically synthesized CeO2 nanoparticles by Ni doping. Phys. Rev. B. 76, 165206 (2007)

    Article  ADS  Google Scholar 

  17. Bernardi, M.I.B., Mesquita, A., Beron, F., Pirota, K.R., De Zevallos, A.O., Doriguetto, A.C., De Carvalho, H.B.: The role of oxygen vacancies and their location in the magnetic properties of Ce1−xCuxO2−δ nanorods. Phys. Chem. Chem. Phys. 17, 3072–3080 (2015)

    Article  Google Scholar 

  18. Alla, S.K., Komarala, E.V.P., Mandal, R.K., Prasad, N.K.: Structural, optical and magnetic properties of Cr-substituted CeO2 nanoparticles. Mater. Chem. Phys. 182, 280–286 (2016)

    Article  Google Scholar 

  19. Lee, W., Chen, S.-Y., Chen, Y.-S., Dong, C.-L., Lin, H.-J., Chen, C.-T., Gloter, A.: Defect structure guided room temperature ferromagnetism of Y-doped CeO2 nanoparticles. J. Phys. Chem. C. 118, 26359–26367 (2014)

    Article  Google Scholar 

  20. Alla, S.K., Kollu, P., Mandal, R.K., Prasad, N.K.: Magnetic properties of Cu doped CeO2 nanostructures prepared by microwave refluxing technique. Ceram. Int. 44, 7221–7227 (2018)

    Article  Google Scholar 

  21. Kumar, S., Ahmed, F., Anwar, M.S., Choi, H.K., Chung, H., Koo, B.H.: Signature of room temperature ferromagnetism in Mn doped CeO2 nanoparticles. Mater. Res. Bull. 47, 2980–2983 (2012)

    Article  Google Scholar 

  22. Chen, X., Li, G., Su, Y., Qiu, X., Li, L., Zou, Z.: Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping. Nanotechnology. 20, 115606 (2009)

    Article  ADS  Google Scholar 

  23. Patil, S., Seal, S., Guo, Y., Schulte, A., Norwood, J.: Role of trivalent La and Nd dopants in lattice distortion and oxygen vacancy generation in cerium oxide nanoparticles. Appl. Phys. Lett. 88, 243110 (2006)

    Article  ADS  Google Scholar 

  24. Liyanage, A.D., Perera, S.D., Tan, K., Chabal, Y., Balkus Jr., K.J.: Synthesis, characterization, and photocatalytic activity of Y-doped CeO2 nanorods. ACS Catal. 4, 577–584 (2014)

    Article  Google Scholar 

  25. D’Angelo, A.M., Liu, A.C.Y., Chaffee, A.L.: Oxygen uptake of Tb-CeO2: analysis of Ce3+ and oxygen vacancies. J. Phys. Chem. C, 120, 14382–14389 (2016)

  26. Phokha, S., Pinitsoontorn, S., Maensiri, S.: Room-temperature ferromagnetism in Co-doped CeO2 nanospheres prepared by the polyvinylpyrrolidone-assisted hydrothermal method. J. Appl. Phys. 112, 113904 (2012)

    Article  ADS  Google Scholar 

  27. Ranjith, K.S., Saravanan, P., Chen, S.-H.S., Dong, C., Chen, C.L., Chen, S.-H.S., Asokan, K., Thangavelu, R., Kumar, R., Rajendra Kumar, R.T.: Enhanced room-temperature ferromagnetism on Co-doped CeO2 nanoparticles: mechanism and electronic and optical properties. J. Phys. Chem. C. 118, 27039–27047 (2014)

    Article  Google Scholar 

  28. Deshpande, S., Patil, S., Kuchibhatla, V.N.T., Seal, S.: Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 87, 133113 (2005)

    Article  ADS  Google Scholar 

  29. Zhang, F., Chan, S.-W., Spanier, J.E., Apak, E., Jin, Q., Robinson, R.D., Herman, I.P.: Cerium oxide nanoparticles: size-selective formation and structure analysis. Appl. Phys. Lett. 80(127), (2002)

  30. Wang, Z., Xin, Y., Zhang, Z., Li, Q., Zhang, Y., Zhou, L.: Synthesis of Fe-doped CeO2 nanorods by a widely applicable coprecipitation route. Chem. Eng. J. 178, 436–442 (2011)

    Article  Google Scholar 

  31. Choudhury, B., Chetri, P., Choudhury, A.: Oxygen defects and formation of Ce3+ affecting the photocatalytic performance of CeO2 nanoparticles. RSC Adv. 4, 4663–4671 (2014)

    Article  Google Scholar 

  32. Ansari, S.A., Khan, M.M., Ansari, M.O., Kalathil, S., Lee, J., Cho, M.H.: Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications. RSC Adv. 4, 16782 (2014)

    Article  Google Scholar 

  33. Dharmadhikari, V.S.: Characterisation of thin films of bismuth oxide by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 25, 181–189 (1982)

    Article  Google Scholar 

  34. Gong, C., Chu, J., Qian, S., Yin, C., Hu, X., Wang, H., Wang, Y., Ding, X., Jiang, S., Li, A., Gong, Y., Wang, X., Li, C., Zhai, T., Xiong, J.: Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gate-controlled deep-ultraviolet phototransistors. Adv. Mater. 1908242 (2020)

  35. Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Ferromagnetism in Fe doped SnO2 thin films. Appl. Phys. Lett. 84, 1332–1334 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Prasad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alla, S.K., Meena, S.S., Gupta, N. et al. Ferromagnetic Bismuth-Substituted CeO2 Nanostructures and Prevalence of Antiferromagnetic Clusters. J Supercond Nov Magn 33, 3941–3947 (2020). https://doi.org/10.1007/s10948-020-05658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05658-0

Keywords

Navigation