Skip to main content
Log in

Effects of Heating Rate on the Thermal and Mechanical Properties of the Bauxite-Based Low-Cement Refractory Castables

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the effects of sintering conditions on the phase composition, microstructure, and physico-mechanical properties of the bauxite-based low-cement refractory castables. For this purpose, the specimens were sintered at various temperatures (1350-1450 °C) and heating rates (3-10 °C/min). Results showed that the sintering conditions have a remarkable effect on the physico-mechanical properties of the refractory castables. The mechanical strength was considerably increased by increasing the heating rate from 3 to 10 °C/min which was attributed to lower amounts of porosity and higher amount of the platy crystals of CA6 phase. The lower porosity of the specimens sintered at lower temperature with 10 °C/min of heating rate also resulted in the higher mechanical strength. The results obtained in this study showed a negative linear relationship between the cold crushing strength and porosity of the specimens with a high degree of measurement conformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.H. Kumar, A. Srivastava, V. Kumar, and V.K. Singh, Implementation of Industrial Waste Ferrochrome Slag in Conventional and Low Cement Castables: Effect of Calcined Alumina, J. Asian Ceram. Soc., 2014, 2(4), p 371–379

    Article  Google Scholar 

  2. S. Mavahebi, M. Bavand-vandchali, and A. Nemati, SiC Fines Effects on the Microstructure and Properties of Bauxite-Based Low-Cement Refractory Castables, Ceram. Int., 2019, 45(13), p 16338–16346

    Article  CAS  Google Scholar 

  3. S.A. Abo-El-Enein, M.M. Abou-Sekkina, N.M. Khalil, and O.A. Shalma, Microstructure and Refractory Properties of Spinel Containing Castables, Ceram. Int., 2010, 36(5), p 1711–1717

    Article  CAS  Google Scholar 

  4. F. Ye, M. Rigaud, X. Liu, and X. Zhong, High Temperature Mechanical Properties of Bauxite-Based SiC-Containing Castables, Ceram. Int., 2004, 30(5), p 801–805

    Article  CAS  Google Scholar 

  5. M. Nouri-Khezrabad, A.P. Luz, V.R. Salvini, F. Golestani-Fard, H.R. Rezaie, and V.C. Pandolfelli, Developing Nano-bonded Refractory Castables with Enhanced Green Mechanical Properties, Ceram. Int., 2015, 41(2), p 3051–3057

    Article  CAS  Google Scholar 

  6. S. Otroj, A. Sagaeian, A. Daghighi, and Z.A. Nemati, The Effect of Nano-size Additives on the Electrical Conductivity of Matrix Suspension and Properties of Self-flowing Low-Cement High Alumina Refractory Castables, Ceram. Int., 2010, 36(4), p 1411–1416

    Article  CAS  Google Scholar 

  7. S. Ghasemi-Kahrizsangi, H.G. Dehsheikh, E. Karamian, A. Ghasemi-Kahrizsangi, and S.V. Hosseini, The Influence of Al2O3 Nanoparticles Addition on the Microstructure and Properties of Bauxite Self-flowing Low-Cement Castables, Ceram. Int., 2017, 43(12), p 8813–8818

    Article  CAS  Google Scholar 

  8. B.P. Bezerra, A.P. Luz, and V.C. Pandolfelli, Novel Drying Additives and Their Evaluation for Self-flowing Refractory Castables, Ceram. Int., 2020, 46(3), p 3209–3217

    Article  CAS  Google Scholar 

  9. C. Gogtas, H.F. Lopez, and K. Sobolev, Role of Cement Content on the Properties of Self-flowing Al2O3 Refractory Castables, J. Eur. Ceram. Soc., 2014, 34(5), p 1365–1373

    Article  CAS  Google Scholar 

  10. A.P. Luz, L.B. Consoni, C. Pagliosa, C.G. Aneziris, and V.C. Pandolfelli, Sintering Effect of Calcium Carbonate in High-Alumina Refractory Castables, Ceram. Int., 2018, 44(9), p 10486–10497

    Article  CAS  Google Scholar 

  11. L.B. Consonni, A.P. Luz, and C.V. Pandolfelli, Binding Additives with Sintering Action for High-Alumina Based Castables, Ceram. Int., 2019, 45(12), p 15290–15297

    Article  CAS  Google Scholar 

  12. C. Domínguez, J. Chevalier, R. Torrecillas, and G. Fantozzi, Microstructure Development in Calcium Hexaluminate, J. Eur. Ceram. Soc., 2001, 21(3), p 381–387

    Article  Google Scholar 

  13. D. Asmi and I.M. Low, Self-reinforced Ca-Hexaluminate/Alumina Composites with Graded Microstructures, Ceram. Int., 2008, 34(2), p 311–316

    Article  CAS  Google Scholar 

  14. S. Ghasemi-Kahrizsangi, M.B. Sedeh, H.G. Dehsheikh, A. Shahraki, and M. Farooghi, Densification and Properties of ZrO2 Nanoparticles Added Magnesia-Doloma Refractories, Ceram. Int., 2016, 42(14), p 15658–15663

    Article  CAS  Google Scholar 

  15. S. Ghasemi-Kahrizsangi, E. Karamian, A. Ghasemi-Kahrizsangi, H.G. Desheikh, and A. Soheily, The Impact of Trivalent Oxide Nanoparticles on the Microstructure and Performance of Magnesite-Dolomite Refractory Bricks, Mater. Chem. Phys., 2017, 193, p 413–420

    Article  CAS  Google Scholar 

  16. S. Ghasemi-Kahrizsangi, A. Nemati, A. Shahraki, and M. Farooghi, Densification and Properties of Fe2O3 Nanoparticles Added CaO Refractories, Ceram. Int., 2016, 42(10), p 12270–12275

    Article  CAS  Google Scholar 

  17. C. Gogtasa, H. Lopeza, and S. Konstantin, Effect of Nano-YSZ and Nano-ZrO2 Additions on the Strength and Toughness Behavior of Self-flowing Alumina Castables, Ceram. Int., 2016, 42, p 1847–1855

    Article  Google Scholar 

  18. Y. Liu, B. Han, T. Zhang, H. Yu, W. Yan, Y. Wei, and N. Li, Effect of Zirconia Particle Size on the Properties of Alumina-Spinel Castables, Ceram. Int., 2016, 42(15), p 16961–16968

    Article  CAS  Google Scholar 

  19. J. Czechowski and I. Majchrowicz, Microwave and Conventional Treatment of Low-Cement High-Alumina Castables with Different Water-to-Cement Ratio; Part II. Dehydration, Ceram. Int., 2018, 44(9), p 10335–10339

    Article  CAS  Google Scholar 

  20. Y. Wang, X. Li, B. Zhu, and P. Chen, Microstructure Evolution during the Heating Process and Its Effect on the Elastic Properties of CAC-Bonded Alumina Castables, Ceram. Int., 2016, 42(9), p 11355–11362

    Article  CAS  Google Scholar 

  21. M.N. Rahaman, Ceramic Processing and Sintering, Marcel Dekker, New York, 1995

    Google Scholar 

  22. S. Otroj and A. Daghighi, Microstructure and Phase Evolution of Alumina-Spinel Self-flowing Refractory Castables Containing Nano-alumina Particles, Ceram. Int., 2011, 37(3), p 1003–1009

    Article  CAS  Google Scholar 

  23. A.P. Luz, A.H.G. Gabriel, L.B. Consoni, C.G. Aneziris, and V.C. Pandolfelli, Self-reinforced High-Alumina Refractory Castables, Ceram. Int., 2018, 44(2), p 2364–2375

    Article  CAS  Google Scholar 

  24. E.E.E. Gültekin, The Effects of Heating Rate and Sintering Temperature on the Strength, Firing Shrinkage, and Bulk Density of Porcelain Tiles, J. Aust. Ceram. Soc., 2018, 54(1), p 39–46

    Article  Google Scholar 

  25. M.Y. Chu, M.N. Rahaman, L.C. De Jonghe, and R.J. Brook, Effect of Heating Rate on Sintering and Coarsening, J. Am. Ceram. Soc., 1991, 74(6), p 1217–1225

    Article  CAS  Google Scholar 

  26. L.A. Diaz, R. Torrecillas, F. Simonin, and G. Fantozzi, Room Temperature Mechanical Properties of High Alumina Refractory Castables with Spinel, Periclase and Dolomite Additions, J. Eur. Ceram. Soc., 2008, 28(15), p 2853–2858

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajar Ahmadi Moghadam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi Moghadam, H., Arab, S.M. Effects of Heating Rate on the Thermal and Mechanical Properties of the Bauxite-Based Low-Cement Refractory Castables. J. of Materi Eng and Perform 29, 5968–5974 (2020). https://doi.org/10.1007/s11665-020-05079-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05079-z

Keywords

Navigation