Skip to main content
Log in

A Study on the Tribological Properties of Al-AlN-Y2W3O12 Hybrid Composites

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of the amount of reinforcements, load, sliding distance and sliding speed on the wear properties of aluminum matrix hybrid composites (AMHCs) reinforced with yttrium tungstate (Y2W3O12) and aluminum nitride (AlN) has been investigated. The hardness and wear resistance of the composites improve with the increasing amount of AlN and Y2W3O12. The wear resistance increases with a decrease in the load and an increase in the sliding distance. The AMHCs exhibit the formation of a stable mechanically mixed layer along with fine grooves and oxides under mild conditions (low load, high sliding distance and low sliding speed) resulting in relatively low wear rate and coefficient of friction (COF). However, under severe conditions (high load, low sliding distance and high sliding speed), the formation of larger grooves along with heavy delamination increases the wear rate and COF. Response surface methodology is used to correlate the experimental values with the predicted values. The results show that the load and amount of reinforcement are significantly affecting the wear rate and COF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. S. Mahdavi and F. Akhlaghi, Effect of the Graphite Content on the Tribological Behaviour of Al-Gr and Al-30SiC-Gr Composites Processed by In Situ Powder Metallurgy (IPM) Method, Tribol. Lett., 2011, 44, p 1–12

    CAS  Google Scholar 

  2. K. Kanthavel, K. Sumesh, and P. Saravanakumar, Study of Tribological Properties on Al-Al2O3-MoS2 Hybrid Composite Processed by Powder Metallurgy, Alex. Eng. J., 2016, 55, p 13–17

    Google Scholar 

  3. M.O. Bodunrin, K.K. Alaneme, and L.H. Chown, Aluminium Matrix Hybrid Composites: A Review of Reinforcement Philosophies; Mechanical, Corrosion and Tribological Characteristics, J. Mater. Res. Technol., 2015, 4, p 434–445

    CAS  Google Scholar 

  4. G. Elango and B. Raghunath, Tribological Behavior Of Hybrid (LM25Al + SiC + TiO2) Metal Matrix Composites, Procedia Eng., 2013, 64, p 671–680

    CAS  Google Scholar 

  5. S. Mitrović, M. Babić, B. Stojanović, N. Miloradović, M. Pantić, and D. Džunić, Tribological Potential of Hybrid Composites Based on Zinc and Aluminium Alloys Reinforced with SiC and Graphite Particles, Tribol. Ind., 2012, 34, p 177–185

    Google Scholar 

  6. S. Chand and P. Chandrasekhar, Influence of B4C-BN on Solid Particle Erosion of Al6061 Metal Matrix Hybrid Composites Fabricated Through Powder Metallurgy Technique, Ceram. Int., 2020, 46, p 17621–17630

    CAS  Google Scholar 

  7. S.T.I. Nayim, M.Z. Hasan, P.P. Seth, P. Gupta, S. Thakur, D. Kumar, and A. Jamwal, Effect of CNT and TiC Hybrid Reinforcement on the Micro-Mechano-Tribo Behaviour of Aluminium Matrix Composites, Mater. Today Proc., 2020, 21, p 1421–1424

    CAS  Google Scholar 

  8. T. Rajmohan, K. Palanikumar, and S. Ranganathan, Evaluation of Mechanical and Wear Properties of Hybrid Aluminium Matrix Composites, Trans. Nonferr. Met. Soc., 2013, 23, p 2509–2517 (in China)

    CAS  Google Scholar 

  9. Y. Wang, A. Afsar, J. Jang, K. Han, and J. Song, Room Temperature Dry and Lubricant Wear Behaviors of Al2O3f-SiCp-Al Hybrid Metal Matrix Composites, Wear, 2010, 268, p 863–870

    CAS  Google Scholar 

  10. S. Veličković, S. Garić, B. Stojanović, and A. Vencl, Tribological Properties of Aluminium Matrix Nanocomposites, Appl. Eng. Lett., 2016, 1, p 72–79

    Google Scholar 

  11. J. Singh and A. Chauhan, Characterization of Hybrid Aluminium Matrix Composites for Advanced Applications—A Review, J. Mater. Res. Technol., 2016, 5, p 159–169

    CAS  Google Scholar 

  12. J. Singh and A. Chauhan, A Review of Microstructure, Mechanical Properties and Wear Behavior of Hybrid Aluminium Matrix Composites Fabricated Via Stir Casting Route, Sādhanā, 2019, 44, p 1–18

    CAS  Google Scholar 

  13. R. Pavithran, J. Swathanandan, N. Praveen, S.P. Kumar, and D.S. Kumaran, Study of Mechanical and Tribological Properties of Al-6061 Reinforced with Silicon Carbide and Graphite Particles, IJTEEE, 2015, 3, p 60–64

    Google Scholar 

  14. S.J. James, K. Venkatesan, P. Kuppan, and R. Ramanujam, Hybrid Aluminium Metal Matrix Composite Reinforced with SiC and TiB2, Procedia Eng., 2014, 97, p 1018–1026

    CAS  Google Scholar 

  15. G. Elango, B. Raghunath, K. Palanikumar, and K. Thamizhmaran, Sliding wear of LM25 Aluminium alloy with 7.5% SiC + 2.5% TiO2 and 2.5% SiC + 7.5% TiO2 Hybrid Composites, J. Compos. Mater., 2014, 48, p 2227–2236

    Google Scholar 

  16. A. Baradeswaran and A.E. Perumal, Study on Mechanical and Wear Properties of Al 7075/Al2O3/Graphite Hybrid Composites, Compos. B Eng., 2014, 56, p 464–471

    CAS  Google Scholar 

  17. S. Mahdavi and F. Akhlaghi, Effect of the SiC Particle Sizosites on the Dry Sliding Wear Behavior of SiC and SiC-Gr-Reinforced Al6061, J. Mater. Comput. Sci., 2011, 46, p 7883–7894

    CAS  Google Scholar 

  18. T. Lee, J. Lee, D. Lee, I. Jo, S.K. Lee, and H.J. Ryu, Effects of Particle Size and Surface Modification of SiC on the Wear Behavior of High Volume Fraction Al/SiCp Composites, J. Alloys Compd., 2020, 831, p 154647

    CAS  Google Scholar 

  19. M. KarbalaeiAkbari, S. Rajabi, K. Shirvanimoghaddam, and H. Baharvandi, Wear and Friction Behavior of Nanosized TiB2 and TiO2 Particle-Reinforced Casting A356 Aluminium Nanocomposites: A Comparative Study Focusing on Particle Capture in Matrix, J. Compos. Mater., 2015, 49, p 3665–3681

    Google Scholar 

  20. B.R. Sa, A. Swamy, and A. Ramesh, Mechanical and Tribological Behaviour of Aluminium Metal Matrix Composites Using Powder Metallurgy Technique—A Review, Int. J. Mech. Eng. Rob. Res., 2014, 3, p 551–563 (in India)

    Google Scholar 

  21. A.E. Nassar and E.E. Nassar, Properties of Aluminium Matrix Nanocomposites Prepared by Powder Metallurgy Processing, J. King Saud Univ. Eng. Sci., 2017, 29, p 295–299

    Google Scholar 

  22. N.M. Kumar, S.S. Kumaran, and L. Kumaraswamidhas, Wear Behaviour of Al 2618 Alloy Reinforced with Si3N4, AlN and ZrB2 In Situ Composites at Elevated Temperatures, Alex. Eng. J., 2016, 55, p 19–36

    Google Scholar 

  23. P. Ravindran, K. Manisekar, S.V. Kumar, and P. Rathika, Investigation of Microstructure and Mechanical Properties of Aluminium Hybrid Nano-composites with the Additions of Solid Lubricant, Mater. Des., 2013, 51, p 448–456

    CAS  Google Scholar 

  24. K. Bodukuri, K. Eswaraiah, K. Rajendar, and V. Sampath, Fabrication of Al-SiC-B4C Metal Matrix Composite by Powder Metallurgy Technique and Evaluating Mechanical Properties, Perspect. Sci., 2016, 8, p 428–431

    Google Scholar 

  25. M. Asif, K. Chandra, and P. Misra, Development of Aluminium Based Hybrid Metal Matrix Composites for Heavy-Duty Applications, JMMCE, 2011, 10, p 1337–1344

    Google Scholar 

  26. A. Alizadeh, A. Abdollahi, and H. Biukani, Creep Behavior and Wear Resistance of Al 5083 Based Hybrid Composites Reinforced with Carbon Nanotubes (CNTs) and Boron Carbide (B4C), J. Alloys Compd., 2015, 650, p 783–793

    CAS  Google Scholar 

  27. D. Jeyasimman, R. Narayanasamy, R. Ponalagusamy, V. Anandakrishnan, and M. Kamaraj, The Effects of Various Reinforcements on Dry Sliding Wear Behaviour of AA 6061 Nanocomposites, Mater. Des., 2014, 64, p 783–793

    CAS  Google Scholar 

  28. K. Umanath, K. Palanikumar, and S. Selvamani, Analysis of Dry Sliding Wear Behaviour of Al6061-SiC-Al2O3 Hybrid Metal Matrix Composites, Compos. B Eng., 2013, 53, p 159–168

    CAS  Google Scholar 

  29. S. Suresha and B. Sridhara, Wear Characteristics of Hybrid Aluminium Matrix Composites Reinforced with Graphite and Silicon Carbide Particulates, Compos. Sci. Technol., 2010, 70, p 1652–1659

    CAS  Google Scholar 

  30. M.T. Guo and C.Y. Tsao, Tribological Behavior of Self-lubricating Aluminium-SiC-Graphite Hybrid Composites Synthesized by the Semi-solid Powder-Densification Method, Compos. Sci. Technol., 2000, 60, p 65–74

    CAS  Google Scholar 

  31. L.D. Wang, C. Ye, C.T. Yang, K.P. Wang, and W.D. Fei, Metastable Phase of β-eucryptite and Thermal Expansion Behavior of Eucryptite Particles Reinforced Aluminium Matrix Composite, Trans. Nonferr. Met. Soc., 2011, 21, p 280–284 (in China)

    Google Scholar 

  32. L. Wang, W. Fei, L. Jiang, and C. Yao, New Aluminum Matrix Composite with Much Lower Coefficient of Thermal Expansion and Higher Strength, J. Mater. Sci. Lett., 2002, 21, p 737–738

    CAS  Google Scholar 

  33. L. Wang, W. Fei, M. Hu, L. Jiang, and C. Yao, A Study on an Aluminum Matrix Composite Reinforced by Both β-Eucryptite Particle and Aluminum Borate Whisker, Mater. Lett., 2002, 53, p 20–24

    CAS  Google Scholar 

  34. J. Sethi, S. Das, and K. Das, Study on Thermal and Mechanical Properties of Yttrium Tungstate-Aluminium Nitride Reinforced Aluminium Matrix Hybrid Composites, J. Alloys Compd., 2019, 774, p 848–855

    CAS  Google Scholar 

  35. S. Das, S. Das, and K. Das, Low Temperature Synthesis of Negative Thermal Expansion Y2 W3O12, J. Mater. Eng. Perform., 2013, 22, p 3357–3363

    CAS  Google Scholar 

  36. S. Rajesh, S. Rajakarunakaran, and R.S. Pandian, Modeling and Optimization of Sliding Specific Wear and Coefficient of Friction of Aluminium Based Red Mud Metal Matrix Composite Using Taguchi Method and Response Surface Methodology, Mater. Phys. Mech., 2012, 15, p 150–166

    CAS  Google Scholar 

  37. J.E.D. Praveen, D.R. Smart, R. Babu, and N. Gnanaprakash, Investigations on Dry Sliding Wear Behaviour of LM13-SiC-Gr Hybrid Composites by Response Surface Methodology, Indian J. Pure Appl. Mater., 2017, 117, p 95–99

    Google Scholar 

  38. G. Singh and S. Goyal, Dry Sliding Wear Behaviour of AA6082-T6/SiC/B4C Hybrid Metal Matrix Composites Using Response Surface Methodology, Proc. Inst. Mech. Eng. Lett., 2018, 232, p 952–964

    CAS  Google Scholar 

  39. T. Ramkumar, P. Narayanasamy, M. Selvakumar, and P. Balasundar, Effect of B4C Reinforcement on the Dry Sliding Wear Behaviour of Ti-6Al-4V/B4C Sintered Composites Using Response Surface Methodology, Arch. Metall. Mater., 2018, 63, p 1179–1200

    CAS  Google Scholar 

  40. S. Gopalakrishnan and N. Murugan, Production and Wear Characterisation of AA 6061 Matrix Titanium Carbide Particulate Reinforced Composite by Enhanced Stir Casting Method, Compos. B Eng., 2012, 43, p 302–308

    CAS  Google Scholar 

  41. E.A. Diler and R. Ipek, Main and Interaction Effects of Matrix Particle Size, Reinforcement Particle Size and Volume Fraction on Wear Characteristics of Al-SiCp Composites Using Central Composite Design, Compos. B Eng., 2013, 50, p 371–380

    CAS  Google Scholar 

  42. G. Wu, Q. Zhang, X. Yang, Z. Huang, and W. Sha, Effects of Particle/Matrix Interface and Strengthening Mechanisms on the Mechanical Properties of Metal Matrix Composites, Compos. Interfaces, 2014, 21, p 415–429

    Google Scholar 

  43. Q. Zhang, W. Gaohui, S. Dongli, and L. Bofeng, Study on the Thermal Expansion and Thermal Cycling of AlNp-Al Composites, J. Mater. Sci. Technol., 2009, 18, p 63–65

    CAS  Google Scholar 

  44. A. Sanaty-Zadeh, Comparison Between Current Models for the Strength of Particulate-Reinforced Metal Matrix Nanocomposites with Emphasis on Consideration of Hall–Petch Effect, Mater. Sci. Eng. A, 2012, 531, p 112–118

    CAS  Google Scholar 

Download references

Acknowledgments

J.S. would like to thank M.H.R.D. Govt. of India for PhD Research Fellowship.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karabi Das.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, J., Mohapatra, S., Sethi, A. et al. A Study on the Tribological Properties of Al-AlN-Y2W3O12 Hybrid Composites. J. of Materi Eng and Perform 29, 5638–5654 (2020). https://doi.org/10.1007/s11665-020-05086-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05086-0

Keywords

Navigation