Skip to main content
Log in

Effect of Pre-treatment on Roughness and Hydrophobicity of Electro-Etched Steel with Improved Corrosion Resistance

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A hydrophobic steel surface was created by a simple electro-etching technique using a cobalt sulfate bath. The effect of surface pre-treatment on the hydrophobicity and surface roughness was investigated. The wettability and roughness of the surface were determined by water contact angle (WCA) and atomic force microscopy (AFM), respectively. Accordingly, the sample abraded with 800 grit sandpaper followed by electro-etching process was selected as the optimum sample with the highest roughness and WCA (Sa = 28.4 nm, Ra = 35.4 nm, and WCA = 144 ± 1.6°, respectively). The morphology and cross-sectional images of the hydrophobic surface were investigated using field-emission scanning electron microscopy (FESEM). FESEM images showed a micro/nanostructured surface. The resulted hydrophobicity was attributed to the high roughness and overhanging structure obtained through this method. Furthermore, by using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests, the corrosion behavior of the samples was investigated. It was revealed that the surface hydrophobicity improved the corrosion resistance by increasing the polarization resistance (from 726 to 1598 Ω cm2) and decreasing the corrosion current density (from 0.025 to 0.012 mA cm−2). The simplicity of creating a hydrophobic surface with the improved corrosion behavior, the availability, and the low cost of the materials used to develop this approach makes it a proper candidate for large-scale and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Farhadi, M. Aliofkhazraei, G.B. Darband, A. Abolhasani, and A.S. Rouhaghdam, Wettability and Corrosion Behavior of Chemically Modified Plasma Electrolytic Oxidation Nanocomposite Coating, J. Mater. Eng. Perform., 2017, 26(10), p 4797–4806

    Article  CAS  Google Scholar 

  2. J. Yong, F. Chen, Q. Yang, J. Huo, and X. Hou, Superoleophobic Surfaces, Chem. Soc. Rev., 2017, 46(14), p 4168–4217

    Article  CAS  Google Scholar 

  3. P. Ragesh, V.A. Ganesh, S.V. Nair, and A.S. Nair, A Review on ‘Self-cleaning and Multifunctional Materials’, J. Mater. Chem. A, 2014, 2(36), p 14773–14797

    Article  CAS  Google Scholar 

  4. J. Genzer and K. Efimenko, Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: A Review, Biofouling, 2006, 22(5), p 339–360

    Article  CAS  Google Scholar 

  5. X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography, Adv. Mater., 2007, 19(17), p 2213–2217

    Article  CAS  Google Scholar 

  6. M.J. Kreder, J. Alvarenga, P. Kim, and J. Aizenberg, Design of Anti-icing Surfaces: Smooth, Textured or Slippery?, Nat. Rev. Mater., 2016, 1(1), p 1–15

    Article  Google Scholar 

  7. S.M. Emarati and M. Mozammel, Efficient One-Step Fabrication of Superhydrophobic Nano-TiO2/TMPSi Ceramic Composite Coating with Enhanced Corrosion Resistance on 316L, Ceram. Int., 2019, 46(2), p 1652–1661

    Article  Google Scholar 

  8. G.-H. Kim, B.-H. Lee, H. Im, S.-B. Jeon, D. Kim, M.-L. Seol, H. Hwang, and Y.-K. Choi, Controlled Anisotropic Wetting of Scalloped Silicon Nanogroove, RSC Adv., 2016, 6(48), p 41914–41918

    Article  CAS  Google Scholar 

  9. A. Vitale, M. Quaglio, S.L. Marasso, A. Chiodoni, M. Cocuzza, and R. Bongiovanni, Direct Photolithography of Perfluoropolyethers for Solvent-Resistant Microfluidics, Langmuir, 2013, 29(50), p 15711–15718

    Article  CAS  Google Scholar 

  10. J. Yong, Y. Fang, F. Chen, J. Huo, Q. Yang, H. Bian, G. Du, and X. Hou, Femtosecond Laser Ablated Durable Superhydrophobic PTFE Films with Micro-through-Holes for Oil/Water Separation: Separating Oil from Water and Corrosive Solutions, Appl. Surf. Sci., 2016, 389, p 1148–1155

    Article  CAS  Google Scholar 

  11. D. Zahner, J. Abagat, F. Svec, J.M. Fréchet, and P.A. Levkin, A Facile Approach to Superhydrophilic–Superhydrophobic Patterns in Porous Polymer Films, Adv. Mater., 2011, 23(27), p 3030–3034

    Article  CAS  Google Scholar 

  12. M. Zhang, S. Feng, L. Wang, and Y. Zheng, Lotus Effect in Wetting and Self-cleaning, Biotribology, 2016, 5, p 31–43

    Article  Google Scholar 

  13. M. Mozammel, M. Khajeh, and N.N. Ilkhechi, Effect of Surface Roughness of 316 L Stainless Steel Substrate on the Morphological and Super-Hydrophobic Property of TiO2 Thin Films Coatings, Silicon, 2018, 10(6), p 2603–2607

    Article  CAS  Google Scholar 

  14. X.-M. Li, D. Reinhoudt, and M. Crego-Calama, What do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces, Chem. Soc. Rev., 2007, 36(8), p 1350–1368

    Article  Google Scholar 

  15. V. Stelmashuk, H. Biederman, D. Slavinska, J. Zemek, and M. Trchova, Plasma Polymer Films Rf Sputtered from PTFE Under Various Argon Pressures, Vacuum, 2005, 77(2), p 131–137

    Article  CAS  Google Scholar 

  16. F. Guo, X. Su, G. Hou, P. Li, Bioinspired Fabrication of Stable and Robust Superhydrophobic Steel Surface with Hierarchical Flowerlike Structure, Colloids Surf. A, 2012, 401, p 61-67

  17. D. Nanda, T. Swetha, P. Varshney, P. Gupta, S.S. Mohapatra, and A. Kumar, Temperature Dependent Switchable Superamphiphobic Coating on Steel Alloy Surface, J. Alloys Compd., 2017, 727, p 1293–1301

    Article  CAS  Google Scholar 

  18. T. Siagian, I. Siregar, H. Lubis, T. Tinggi, U. Hamzah, H. Process, Characteristics of St. 37 Steel Materials with Temperature and Time on Heat Treatment Test using Furnace, Int. J. Innov. Sci. Res. Technol.(IJISRT), 2018, 3(4), p 49-53

  19. K. Liu and L. Jiang, Metallic Surfaces with Special Wettability, Nanoscale, 2011, 3(3), p 825–838

    Article  CAS  Google Scholar 

  20. Z. Yuan, H. Chen, J. Tang, H. Gong, Y. Liu, Z. Wang, P. Shi, J. Zhang, and X. Chen, A Novel Preparation of Polystyrene Film with a Superhydrophobic Surface Using a Template Method, J. Phys. D Appl. Phys., 2007, 40(11), p 3485–3489

    Article  CAS  Google Scholar 

  21. W.T. Choi, K. Oh, P.M. Singh, V. Breedveld, and D.W. Hess, Hydrophobicity and Improved Localized Corrosion Resistance of Grain Boundary Etched Stainless Steel in Chloride-Containing Environment, J. Electrochem. Soc., 2017, 164(2), p C61–C65

    Article  CAS  Google Scholar 

  22. M. Ma, Y. Mao, M. Gupta, K.K. Gleason, and G.C. Rutledge, Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition, Macromolecules, 2005, 38(23), p 9742–9748

    Article  CAS  Google Scholar 

  23. T. Darmanin, E.T. de Givenchy, S. Amigoni, and F. Guittard, Superhydrophobic Surfaces by Electrochemical Processes, Adv. Mater., 2013, 25(10), p 1378–1394

    Article  CAS  Google Scholar 

  24. D.E. Weibel, A.F. Michels, A.F. Feil, L.v. Amaral, S.R. Teixeira, F. Horowitz, Adjustable Hydrophobicity of Al Substrates by Chemical Surface Functionalization of Nano/Microstructures, J. Phys. Chem. C, 2010, 114(31), p 13219-13225

  25. N. Shirtcliffe, G. McHale, M. Newton, and C. Perry, Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces, Langmuir, 2005, 21(3), p 937–943

    Article  CAS  Google Scholar 

  26. J. Cremaldi and B. Bhushan, Fabrication of Bioinspired, Self-cleaning Superliquiphilic/Phobic Stainless Steel Using Different Pathways, J. Colloid Interface Sci., 2018, 518, p 284–297

    Article  CAS  Google Scholar 

  27. M. Yazdani, M.R. Toroghinejad, and S.M. Hashemi, Investigation of Microstructure and Mechanical Properties of St37 Steel-Ck60 Steel Joints by Explosive Cladding, J. Mater. Eng. Perform., 2015, 24(10), p 4032–4043

    Article  CAS  Google Scholar 

  28. M. Salehi, M. Mozammel, S.M. Emarati, M. Alinezhadfar, The role of TiO2 Nanoparticles on the Topography and Hydrophobicity of Electrodeposited Ni-TiO2 Composite Coating, Surf. Topogr. Metrol. Prop. 2020, 8(2), 025008

  29. L. Ju, H. Xiao, L. Ye, A. Hu, and M. Li, Wettability Evolution of Different Nanostructured Cobalt Films Based on Electrodeposition, Micro Nano Lett., 2017, 12(7), p 470–473

    Article  CAS  Google Scholar 

  30. T. Rasitha, S. Vanithakumari, R. George, and J. Philip, Porous Microcapsule-Based Regenerating Superhydrophobic Coating on 304L SS and its Corrosion Properties, J. Mater. Eng. Perform., 2019, 28(11), p 7047–7057

    Article  CAS  Google Scholar 

  31. A. Toosinezhad, M. Alinezhadfar, and S. Mahdavi, Cobalt/Graphene Electrodeposits: Characteristics, Tribological Behavior, and Corrosion Properties, Surf. Coat. Technol., 2020, 385, p 125418

    Article  CAS  Google Scholar 

  32. M.J. Palimi, M. Rostami, M. Mahdavian, and B. Ramezanzadeh, Application of EIS and Salt Spray Tests for Investigation of the Anticorrosion Properties of Polyurethane-Based Nanocomposites Containing Cr2O3 Nanoparticles Modified with 3-amino Propyl Trimethoxy Silane, Prog. Org. Coat., 2014, 77(11), p 1935–1945

    Article  CAS  Google Scholar 

  33. S. Karimi, T. Nickchi, and A. Alfantazi, Effects of Bovine Serum Albumin on the Corrosion Behaviour of AISI, 316L, Co-28Cr-6Mo, and Ti-6Al-4V Alloys in Phosphate Buffered Saline Solutions, Corros. Sci., 2011, 53(10), p 3262–3272

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are also immensely grateful to engineer Ali Mohseni for his thoughtful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Mozammel.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alinezhadfar, M., Mozammel, M. Effect of Pre-treatment on Roughness and Hydrophobicity of Electro-Etched Steel with Improved Corrosion Resistance. J. of Materi Eng and Perform 29, 5950–5958 (2020). https://doi.org/10.1007/s11665-020-05074-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05074-4

Keywords

Navigation