Skip to main content

Advertisement

Log in

Tracing the Paleobiology of Paedotherium and Tremacyllus (Pachyrukhinae, Notoungulata), the Latest Sciuromorph South American Native Ungulates – Part I: Snout and Masticatory Apparatus

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Inquiring into the paleoecology of extinct forms is always a challenge, particularly when the taxa under study correspond to derived ecomorphs of ancient and completely extinct clades. In this contribution, the configuration of the masticatory apparatus and associated features of the Neogene pachyrukhines Paedotherium and Tremacyllus are studied in a detailed, mainly qualitative, comparative analysis of 36 specimens. Tooth morphology and the reconstructed muscular configuration of pachyrukhines indicate an important mediolateral component during chewing, and predominant crushing over grinding, as well as anteroposterior movements for the coupling and action of stronger gnawing incisors. These actions are more compatible with hard and brittle or turgid fruit food consumption than specialized folivorous, and particularly grazing, habits. The infraorbital and palatal foramina morphology and other rostral features indicate increased touch sensibility for object recognition and are congruent with the presence of infoldings of the lips protecting the gingiva during gnawing on hard foods. Additionally, there was a morphological gradient between Tremacyllus and P. bonaerense, from high selection of relatively soft and small food items, to specialized hard item consumption and higher resistance for abrasion and masticatory efforts (e.g., in eventual association with digging habits), respectively. Paedotherium typicum presents intermediate characteristics, with incisors designed for better cropping action or poorer selectivity during feeding. This more profound understanding of the feeding habits of pachyrukhines further allows the suggestion of paleoecological factors that could have contributed to niche segregation between these long-term coexisting rodent-like taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ade M (1999) External morphology and evolution of the rhinarium of Lagomorpha. With special reference to the Glires hypothesis. Mitt Mus Natkd Berl Zool Reihe 75:191–216

    Google Scholar 

  • Agrawal VC (1967) Skull adaptations in fossorial rodents. Mammalia 31:300–312

    Google Scholar 

  • Álvarez A, Ercoli MD, Verzi DH (2020) Integration and diversity of the caviomorph mandible (Rodentia: Hystricomorpha): assessing the evolutionary history through fossils and ancestral shape reconstructions. Zool J Linnean Soc 188:276–301

    Google Scholar 

  • Álvarez A, Vieytes EC, Becerra F, Olivares AI, Echeverría AI, Verzi DH, Vassallo AI (2015) Diversity of craniomandibular morphology in caviomorph rodents. An overview of macroevolutionary and functional patterns. In: Vassallo AI, Antenucci D (eds) Biology of Caviomorph Rodents: Diversity and Evolution. Sociedad Argentina para el Estudio de los Mamíferos (SAREM), Buenos Aires, pp 199–228

  • Ameghino F (1853-1911) Obras completas y correspondencia científica de Florentino Ameghino (Torcelli AJ comp) 24 Vols. Taller de Impresiones Oficiales del Gobierno de la Provincia de Buenos Aires, La Plata, Argentina

    Google Scholar 

  • Anderson SA (1997) Mammals of Bolivia, taxonomy and distribution. Bull Am Mus Nat Hist 231:1–652

    Google Scholar 

  • Argot C (2003) Functional-adaptive anatomy of the axial skeleton of some extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 255:279–300

    PubMed  Google Scholar 

  • Asher M, Spinelli de Oliveira E, Sachser N (2004) Social system and spatial organization of wild guinea pigs (Cavia aperea) in a natural population. J Mammal 85:788–796

    Google Scholar 

  • Axmacher H, Hofmann RR (1988) Morphological characteristics of the masseter muscle of 22 ruminant species. J Zool 215:463–473

    Google Scholar 

  • Ball SS, Roth VL (1995) Jaw muscles of New World squirrels. J Morphol 224:265–291

    CAS  PubMed  Google Scholar 

  • Banke J, Mess A, Zeller U (2001) Functional morphology of the rostral head region of Cryptomys hottentotus (Bathyergidae, Rodentia). In: Denys C, Granjon L, Poulet A (eds) African Small Mammals. IRD Editions, Paris, pp 231–241

  • Bargo F, Delahoy JE, Schroeder GF, Baumgard LH, Muller LD (2006) Supplementing total mixed rations with pasture increase the content of conjugated linoleic acid in milk. Anim Feed Sci Tech 131:226–240

    CAS  Google Scholar 

  • Barnosky AD, Lindsey EL (2010) Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat Int 217:10–29

    Google Scholar 

  • Barone R (1987) Anatomía Comparada de los Mamíferos Domésticos. Hemisferio Sur, Buenos Aires

    Google Scholar 

  • Barreda V, Palazzesi L (2007) Patagonian vegetation turnovers during the Paleogene-Early Neogene: origin of arid-adapted floras. Bot Rev 73:31–50

    Google Scholar 

  • Barry RE, Shoshani J (2000) Heterohyrax brucei. Mammal Species 645:1–7

    Google Scholar 

  • Becerra F, Echeverría AI, Casinos A, Vassallo AI (2014) Another one bites the dust: bite force and ecology in three caviomorph rodents (Rodentia, Hystricognathi). J Exp Zool A Ecol Genet Physiol 321:220–232

  • Becerra F, Echeverría A, Vassallo AI, Casinos A (2011) Bite force and jaw biomechanics in the subterranean rodent Talas tuco-tuco (Ctenomys talarum) (Caviomorpha: Octodontoidea). Can J Zool 89:334–342

    Google Scholar 

  • Becerra F, Vassallo AI, Echeverría AI, Casinos A (2012) Scaling and adaptations of incisors and cheek teeth in caviomorph rodents (Rodentia, Hystricognathi). J Morphol 273:1150–1162

    PubMed  Google Scholar 

  • Begnoche D (2002) "Lepus capensis." Animal Diversity Web. Accessed March 26, 2020 at https://animaldiversity.org/accounts/Lepus_capensis/

  • Bernal N (2016) Cavia aperea. The IUCN Red List of Threatened Species 2016: e.T86257782A22189256. https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T86257782A22189256.en. Downloaded on 17th July 2019

  • Besoluk K, Eken E, Bahar S (2006) The branches of the descending palatine artery and their relation to the vomeronasal organ in Angora goats. Vet Med 51:55–59

    Google Scholar 

  • Billet G (2011) Phylogeny of the Notoungulata (Mammalia) based on cranial and dental characters. J Syst Palaeontol 9:481–497

    Google Scholar 

  • Billet G, Blondel C, Muizon C de (2009a) Dental microwear analysis of notoungulates (Mammalia) from Salla (late Oligocene, Bolivia) and discussion on their precocious hypsodonty. Palaeogeogr Palaeoclimatol Palaeoecol 274:114–124

  • Billet G, Patterson B, Muizon C de (2009b) Craniodental anatomy of late Oligocene archaeohyracids (Notoungulata, Mammalia) from Bolivia and Argentina and new phylogenetic hypotheses. Zool J Linnean Soc 155:458–509

  • Bond M (1986) Los ungulados fósiles de Argentina: evolución y paleoambientes. IV Congr Argent Paleontol Bioestratigr Actas 2:173–185

    Google Scholar 

  • Bond M (1999) Quaternary native ungulates of southern South America. A synthesis. In: Rabassa J, Salemme M (eds) Quaternary of South America and Antarctic Peninsula. A.A. Balkema, Rotterdam, pp 177–205

  • Bondesio P, Laza JH, Scillato GJ, Tonni EP, Vucetich MG (1980) Estado actual del conocimiento de los vertebrados de la Formación Arroyo Chasicó (Plioceno temprano) de la provincia de Buenos Aires. II Congr Argent Paleontol Bioestrat y I Congr Latinoam Paleontol Actas:101–127

  • Bonini RA (2014) Bioestratigrafía y diversidad de los mamíferos del Neógeno de San Fernando y Puerta de Corral Quemado (Catamarca, Argentina). Ph.D. dissertation, Universidad Nacional de La Plata, La Plata

    Google Scholar 

  • Brecht M, Preilowski B, Merzenich MM (1997) Functional architecture of the mystacial vibrissae. Behav Brain Res 84:81–97

    CAS  PubMed  Google Scholar 

  • Broman I (1919) Über bisher unbekannte quergestreifte Muskeln im harten Gaumen der Nagetiere. Anat Anz 52:1–15

    Google Scholar 

  • Bugge J (1968) The arterial supply of the rabbit nose and oral cavity. Acta Anat 70:168–183

    CAS  PubMed  Google Scholar 

  • Casanovas-Vilar I, van Dam J (2013) Conservatism and adaptability during squirrel radiation: what is mandible shape telling us? PLoS ONE 8:e61298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassini GH (2011) Paleobiología de ungulados de la Formación Santa Cruz (Mioceno temprano-medio), Patagonia, Argentina. Una aproximación morfométrica y morfofuncional al estudio del aparato masticatorio. Ph.D. dissertation, Universidad Nacional de la Plata, La Plata

    Google Scholar 

  • Cassini GH (2013) Skull geometric morphometrics and paleoecology of Santacrucian (late early Miocene; Patagonia) native ungulates (Astrapotheria, Litopterna, and Notoungulata). Ameghiniana 50:193–216

    Google Scholar 

  • Cassini GH, Cerdeño E, Villafañe AM, Muñoz NA (2012) Paleobiology of Santacrucian native ungulates (Meridiungulata: Astrapotheria, Litopterna and Notoungulata). In: Vizcaíno SF, Kay FR, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 243–286

  • Cassini GH, Hernández Del Pino S, Muñoz NA, Acosta MVWG, Fernández M, Bargo MS, Vizcaíno SF (2017) Teeth complexity, hypsodonty and body mass in Santacrucian (early Miocene) notoungulates (Mammalia). Earth Environ Sci Trans R Soc Edinb 106:303– 313

  • Cassini GH, Mendoza M, Vizcaíno SF, Bargo MS (2011) Inferring habitat and feeding behaviour of early Miocene notoungulates from Patagonia. Lethaia 44:153–165

    Google Scholar 

  • Cassini GH, Vizcaíno SF (2012) An approach to the biomechanics of the masticatory apparatus of early Miocene (Santacrucian age) South American ungulates (Astrapotheria, Litopterna, and Notoungulata): moment arm estimation based on 3d landmarks. J Mammal Evol 19:9–25

    Google Scholar 

  • Cerdeño E, Bond M (1998) Taxonomic revision and phylogeny of Paedotherium and Tremacyllus (Pachyrukhinae, Hegetotheriidae, Notoungulata) from the late Miocene to Pleistocene of Argentina. J Vertebr Paleontol 18:799–811

  • Cifelli RL (1985) South American ungulate evolution and extinction In: Stehli FG, Webb SD (eds) The Great American Biotic Interchange. Plenum Press, New York, pp 249–266

  • Cifelli RL (1993) The phylogeny of the native South American ungulates. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny, Vol. 2: Placentals. Springer, New York, pp 195–216

  • Cione LA, Gasparini GM, Soibelzon E, Soibelzon LE, Tonni EP (2015) The Great American Biotic Interchange: A South American Perspective. Springer Briefs in Earth System Sciences. Springer, New York

  • Clauss M, Steuer P, Müller DWH, Codron D, Hummel J (2013) Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS ONE 8(10):e68714, doi:https://doi.org/10.1371/journal.pone.0068714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clippinger NW (1989) Habitat suitability index models: black-tailed prairie dog. US Fish Wildl Serv Biol Rep 82 (10.156):1-–21

  • Collinson ME, Hooker JJ (2000) Gnaw marks on Eocene seeds: evidence for early rodent behaviour. Palaeogeogr Palaeoclimatol Palaeoecol 157:127–149

    Google Scholar 

  • Cox PG, Baverstock H (2016) Masticatory muscle anatomy and feeding efficiency of the American beaver, Castor canadensis (Rodentia, Castoridae). J Mammal Evol 23:191–200

    Google Scholar 

  • Cox PG, Jeffery N (2011) Reviewing the morphology of the jaw-closing musculature in squirrels, rats and guinea pigs with contrast enhanced microCT. Anat Rec 294:915–928

    Google Scholar 

  • Cox PG, Rayfield EJ, Fagan MJ, Herrel A, Pataky TC, Jeffery N (2012) Functional evolution of the feeding system in rodents. PLoS ONE 7:e36299

  • Crabb ED (1912) Principles of Functional Anatomy of the Rabbit. Blakiston's Son and Co, Philadelphia

    Google Scholar 

  • Croft DA (1999) Placentals: endemic South American ungulates. In: Singer R (ed) The Encyclopedia of Paleontology. Fitzroy-Dearborn, Chicago, pp 890–906

  • Croft DA (2016) Horned Armadillos and Rafting Monkeys: The Fascinating Fossil Mammals of South America (Life of the Past). Indiana University Press, Bloomington, Indianapolis

    Google Scholar 

  • Croft DA, Anaya F (2006) A new middle Miocene hegetotheriid (Notoungulata: Typotheria) and a phylogeny of the Hegetotheriidae. J Vertebr Paleontol 26:387–399

    Google Scholar 

  • Croft DA, Anderson LC (2008) Locomotion in the extinct notoungulate Protypotherium. Palaeontol Electr 11.1.1A:1–20

    Google Scholar 

  • Croft DA, Gelfo JN, López GM (2020) Splendid innovation: the South American native ungulates. Annu Rev Earth Planet Sci 48:11.1–11.32

    Google Scholar 

  • Croft DA, Bond M, Flynn JJ, Reguero M, Wyss AR (2003) Large archaeohyracids (Typotheria, Notoungulata) from central Chile and Patagonia, including a revision of Archaeotypotherium. Fieldiana Geol 49:1–38

  • Croft DA, Niemi K, Franco A (2011) Incisor morphology reflects diet in caviomorph rodents. J Mammal 92:871–879

  • Croft DA, Weinstein D (2008) The first application of the mesowear method to endemic South American ungulates (Notoungulata). Palaeogeogr Palaeoclimatol Palaeoecol 269:103–114

    Google Scholar 

  • Crompton AW, Lieberman DE, Aboelela S (2006) Tooth orientation during occlusion and the functional significance of condylar translation in primates and herbivores. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR (eds) Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles. University of Chicago Press, Chicago, pp 367–388

  • Damuth J, Janis CM (2011) On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biol Rev 86:733–758

    PubMed  Google Scholar 

  • De Blieux DD, Simons EL (2002) Cranial and dental anatomy of Antilohyrax pectidens: a late Eocene hyracoid (Mammalia) from the Fayum, Egypt. J Vertebr Paleontol 22:122–136

    Google Scholar 

  • Demment MW, Van Soest PJ (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672

  • Deschamps C (2005) Late Cenozoic mammal bio-chronostratigraphy in southwestern Buenos Aires Province, Argentina. Ameghiniana 42:733–750

    Google Scholar 

  • Domingo L, Tomassini RL, Montalvo CI, Sanz-Pérez D, Alberdi MT (2020) The Great American Biotic Interchange revisited: a new perspective from the stable isotope record of Argentine Pampas fossil mammals. Sci Rep 10:1608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Druzinsky RE (2010a) Functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents. Part 2: Sciuromorphy is efficacious for production of force at the incisors. Cells Tissues Organs 192:50–63

    PubMed  PubMed Central  Google Scholar 

  • Druzinsky RE (2010b) Functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents – Part 1: masticatory muscles, skull shape and digging. Cells Tissues Organs 191:510–522

    PubMed  PubMed Central  Google Scholar 

  • Druzinsky RE, Doherty AH, De Vree FL (2011) Mammalian masticatory muscles: homology, nomenclature, and diversification. Integr Comp Biol 51:224–234

    PubMed  Google Scholar 

  • Ebensperger LA, Blumstein DT (2006) Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behav Ecol 17:410–418

    Google Scholar 

  • Elissamburu A (2004) Morphometric and morphofunctional analysis of the appendicular skeleton of Paedotherium (Mammalia, Notoungulata). Ameghiniana 41:363–380

    Google Scholar 

  • Elissamburu A (2007) Estudio biomecánico del aparato locomotor de ungulados nativos sudamericanos (Notoungulata). Ph.D. dissertation, Universidad Nacional de La Plata, La Plata

    Google Scholar 

  • Elissamburu A (2012) Estimación de la masa corporal en géneros del Orden Notoungulata. Est Geol 69:91–111

  • Elissamburu A, Dondas A, De Santis L (2011) Morfometría de las paleocuevas de la ‘Fm.’ Chapadmalal y su asignación a Actenomys (Rodentia), Paedotherium (Notoungulata) y otros mamíferos fósiles hospedantes. Mastozool Neotrop 18:227–238

  • Elissamburu A, Vizcaíno SF (2005) Diferenciación morfométrica del húmero y fémur de las especies de Paedotherium (Mammalia, Notoungulata) del Plioceno y Pleistoceno temprano. Ameghiniana 42:159–166

    Google Scholar 

  • Ercoli MD, Álvarez A, Candela AM (2019) Sciuromorphy outside rodents reveals an ecomorphological convergence between squirrels and extinct South American ungulates. Commun Biol 2:202: https://doi.org/10.1038/s42003-019-0423-5

  • Ercoli MD, Candela AM, Rasia LL, Ramírez MA (2018) Dental shape variation of Neogene Pachyrukhinae (Mammalia, Notoungulata, Hegetotheriidae): systematics and evolutionary implications for the late Miocene Paedotherium species. J Syst Palaeontol 16:1073–1095

    Google Scholar 

  • Evans HE, de Lahunta A (2013) Miller’s Guide to the Dissection of the Dog. W.B. Saunders Company, Philadelphia

  • Fagerstone KA, Tietjen HP, Williams O (1981) Seasonal variation in the diet of black-tailed prairie dogs. J Mammal 62:820–824

    Google Scholar 

  • Feldhamer GA, Drickamer LC, Vessey SH, Merritt JF, Krajewski C (2015) Mammalogy: Adaptation, Diversity, Ecology, 4th Ed. Johns Hopkins University Press, Baltimore

  • Fernández M (1949) Sobre la vizcacha (Lagostomus trichodactylus Brooks) sus viviendas y su protección. Bol Acad Nac Cienc 38:348–379

    Google Scholar 

  • Filippo A, Kalthoff DC, Billet G, Gomes Rodrigues H (2020) Evolutionary and functional implications of incisor enamel microstructure diversity in Notoungulata (Placentalia, Mammalia). J Mammal Evol 27:211–236

    Google Scholar 

  • Fortelius M (1985) Ungulate cheek teeth: developmental, functional and evolutionary interrelations. Acta Zool Fenn 180:1–76

    Google Scholar 

  • Fortelius M, Solounias N (2000) Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. Am Mus Novitates 3301:1–36

    Google Scholar 

  • Frahnert S (1999) Morphology and evolution of the Glires rostral cranium. Mitt Mus Naturkd Berl Zool Reihe 75:229–246

    Google Scholar 

  • Furuuchi K, Koyabu D, Mori K, Endo H (2013) Physiological cross-sectional area of the masticatory muscles in the giraffe (Giraffa camelopardalis). Mammal Study 38:67–71

    Google Scholar 

  • Giannini NP, García López DA (2014) Ecomorphology of mammalian fossil lineages: identifying morphotypes in a case study of endemic South American ungulates. J Mammal Evol 21:195–212

    Google Scholar 

  • Gomes Rodrigues H, Cornette R, Clavel J, Cassini GH, Bhullar B-AS, Fernández-Monescillo M, Moreno K, Herrel A, Billet G (2018) Differential influences of allometry, phylogeny and environment on the rostral shape diversity of extinct South American notoungulates. R Soc Open Sci 5:171816

    PubMed  PubMed Central  Google Scholar 

  • Gomes Rodrigues H, Šumbera R, Hautier L (2016) Life in burrows channelled the morphological evolution of the skull in rodents: the case of African mole-rats (Bathyergidae, Rodentia). J Mammal Evol 23:175–189

    Google Scholar 

  • Greaves WS (1973) The inference of jaw motion from tooth wear facets. J Paleontol 47:1000–1001

    Google Scholar 

  • Greaves WS (1978) The jaw lever system in ungulates: a new model. J Zool 184:271–285

    Google Scholar 

  • Greaves WS (1982) A mechanical limitation on the position of the jaw muscle of mammals: the one-third rule. J Mammal 63:261–266

    Google Scholar 

  • Greaves WS (1988) A functional consequence of an ossified mandibular symphysis. Am J Phys Anthropol 77:53-56

    CAS  PubMed  Google Scholar 

  • Greaves WS (2012) The Mammalian Jaw: A Mechanical Analysis. Cambridge University Press, Cambridge, 126 pp

  • Green JL, Croft DA (2018) Using dental mesowear and microwear for dietary inference: a review of current techniques and applications. In: Croft DA, Su DF, Simpson SW (eds) Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities. Springer Nature, Cham, pp 53–73

  • Gregg JM, Avery JK (1971) Experimental studies of vascular development in normal and cleft palate mouse embryos. Cleft Palate J 8:101–117

    CAS  PubMed  Google Scholar 

  • Hart BL, Hart LA, Maina JN (1988) Alteration in vomeronasal system anatomy in alcelaphine antelopes: correlation with alteration in chemosensory investigation. Physiol Behav 42:155–162

    CAS  PubMed  Google Scholar 

  • Hautier L, Lebrun R, Saksiri S, Michaux J, Vianey-Liaud M, Marivaux L (2011) Hystricognathy vs sciurognathy in the rodent jaw: a new morphometric assessment of hystricognathy applied to the living fossil Laonastes (Diatomyidae). PLoS ONE 6:e18698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes LD, Chesh AS, Ebensperger LA (2007) Ecological predictors of range areas and use of burrow systems in the diurnal rodent, Octodon degus. Ethology 113:155–165

    Google Scholar 

  • Hayssen V (2008) Patterns of body and tail length and body mass in Sciuridae. J Mammal 89:852–873

    Google Scholar 

  • Hershkovitz P (1967) Dynamics of rodent molar evolution: a study based on New World Cricetinae, family Muridae. J Dent Res 46:829–842

    CAS  PubMed  Google Scholar 

  • Hiiemae KM, Crompton AW (1985) Mastication, food transport and swallowing. In: Bramble DM, Liem KF, Wake DB (eds) Functional Vertebrate Morphology. Harvard University Press, Cambridge, pp 262–290

  • Hoeck HN (1975) Differential feeding behaviour of the sympatric hyrax Procavia johnstoni and Heterohyrax brucei. Oecologia 22:15–47

    CAS  PubMed  Google Scholar 

  • Hoogland JL (1996) Cynomys ludovicianus. Mammal Species 535:1–10

    Google Scholar 

  • Howell AB (1932) The saltatorial rodent Dipodomys: the functional and comparative anatomy of its muscular and osseous systems. Proc Am Acad Arts Sci 67:377–536

    Google Scholar 

  • Ike H (1990) Microvascular architecture of the hard palatine mucosa in the rabbit. Okajimas Folia Anat Jpn 67:65–80

    CAS  PubMed  Google Scholar 

  • Janis CM (1979) Mastication in the Hyrax and its relevance to ungulate dental evolution. Paleobiology 5:50–59

    Google Scholar 

  • Janis CM (1983) Muscles of the masticatory apparatus in two genera of hyraces (Procavia and Heterohyrax). J Morphol 176:61–87

    CAS  PubMed  Google Scholar 

  • Janis CM (1988) An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preferences. In: Russell DR, Santoro J-P, Sigogneau-Russell D (eds) Teeth Revisited: Proceedings of the VIIth International Symposium on Dental Morphology, Paris, 1986. Mem Mus Natl Hist Nat, series C, Paris, pp 367–387

  • Janis CM (1995) Correlations between craniodental morphology and feeding behavior in ungulates: reciprocal illumination between living and fossil taxa. In: Thomason JJ (ed) Functional Morphology in Vertebrate Paleontology. Cambridge University Press, Cambridge, pp 76–98

  • Janis CM, Ehrhardt D (1988) Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zool J Linnean Soc 92:267–284

    Google Scholar 

  • Janis CM, Fortelius M (1988) On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biol Rev 63: 197–230

    CAS  PubMed  Google Scholar 

  • Johnston CH, Robinson TJ, Child MF, Relton C (2019) Lepus capensis. The IUCN Red List of Threatened Species 2019: e.T41277A45186750. https://doi.org/10.2305/IUCN.UK.2019-1.RLTS.T41277A45186750.en

  • Justo ER, De Santis LJM, Kin MS (2003) Ctenomys talarum. Mammal Species 730:1–5

    Google Scholar 

  • Kinlaw A (1999) A review of burrowing by semi-fossorial vertebrates in arid environments. J Arid Environ 41:127–145

    Google Scholar 

  • Korth WW (1994) The Tertiary Record of Rodents in North America. Plenum Press, New York

    Google Scholar 

  • Kraglievich L (1926) Sobre el conducto humeral en las vizcachas y paquirucos chapadmalenses con descripción del Paedotherium imperforatum. Anal Mus Hist Nat Buenos Aires 34:45–88

    Google Scholar 

  • Kubo MO, Yamada E (2014) The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant sika deer populations. PLoS ONE 9:1–12

    Google Scholar 

  • Landry SO Jr (1970) The Rodentia as omnivores. Q Rev Biol 45:351–372

    PubMed  Google Scholar 

  • Lieberman DE, Crompton AW (2000) Why fuse the mandibular symphysis? A comparative analysis. Am J Phys Anthropol 112:517–540

    CAS  PubMed  Google Scholar 

  • Lorente M, Gelfo JN, López GM (2019) First skeleton of the notoungulate mammal Notostylops murinus and palaeobiology of Eocene Notostylopidae. Lethaia 52:244-259

    Google Scholar 

  • MacFadden BJ (2005) Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quat Res 64:113–124

  • MacPhee RDE (2014) The serrialis bone, interparietals, “x” elements, entotympanics, and the composition of the notoungulate caudal cranium. Bull Am Mus Nat Hist 384:1–69

    Google Scholar 

  • Madden RH (2015) Hypsodonty in Mammals Evolution, Geomorphology, and the Role of Earth Surface Processes. Cambridge University Press, Cambridge

    Google Scholar 

  • Maestri R, Patterson BD, Fornel R, Monteiro LR, de Fretias TRO (2016) Diet, bite force and skull morphology in the generalist rodent morphotype. J Evol Biol 29:2191–2204

    CAS  PubMed  Google Scholar 

  • Mares MA, Lacher TE Jr (1987) Ecological, morphological, and behavioral convergence in rock-dwelling mammals. In: Genoways HH (ed) Current Mammalogy, Vol. 1. Plenum Press, New York, pp 307–348

  • Marshall LG, Sempere T (1991) The Eocene to Pleistocene vertebrates of Bolivia and their stratigraphic context: a review. In: Suárez-Soruco R (ed) Fósiles y Facies de Bolivia - Vol. I Vertebrados. Yacimientos Petrolíferos Fiscales Bolivianos, Santa Cruz, pp 631–652

  • Maynard Smith J, Savage RJG (1959) The mechanics of mammalian jaws. Sch Sci Rev 141:289–301

    Google Scholar 

  • McCoy DE, Norris CA (2012) The cranial anatomy of the Miocene notoungulate Hegetotherium mirabile (Notoungulata, Hegetotheriidae) with preliminary observations on diet and method of feeding. Bull Peabody Mus Nat Hist 53:355–374

    Google Scholar 

  • Meijaar E, Groves CP (2004) A taxonomic revision of the Tragulus mouse-deer (Artiodactyla). Zool J Linnean Soc 140:63–102

    Google Scholar 

  • Meijaard E (2011) Tragulidae. In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World, Vol. 2, Hoofed Mammals. Lynx Edicions, Barcelona, pp 320–335

  • Mendoza M, Janis CM, Palmqvist P (2002) Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. J Zool 258:223–246

    Google Scholar 

  • Morgan CC, Verzi DH, Olivares AI, Vieytes EC (2017) Craniodental and forelimb specializations for digging in the South American subterranean rodent Ctenomys (Hystricomorpha, Ctenomyidae). Mammal Biol 87:118–124

    Google Scholar 

  • Muchlinski MN (2010) A comparative analysis of vibrissa count and infraorbital foramen area in primates and other mammals. J Hum Evol 58:447–473

    PubMed  Google Scholar 

  • Nevo E (1999) Mosaic Evolution of Subterranean Mammals: Regression, Progression, and Global Convergence. Oxford University Press, Oxford

  • Novacek MJ (1985). Cranial evidence for rodent affinities. In: Luckett WP, Hartenberger J-L (eds) Evolutionary Relationships Among Rodents. A Multidisciplinary Analysis. Plenum Press, New York, pp 59–82

  • Ojeda RA, Novillo A, Ojeda AA (2015) Large-scale richness patterns, biogeography and ecological diversification in caviomorph rodents. In: Vassallo AI, Antenucci D (eds) Biology of Caviomorph Rodents: Diversity and Evolution. Sociedad Argentina para el Estudio de los Mamíferos (SAREM), Buenos Aires, pp 121–138

  • Olivares AI, Verzi DH, Vassallo AI (2004) Masticatory morphological diversity and chewing modes in octodontid rodents (Rodentia, Octodontidae). J Zool 263:167–177

    Google Scholar 

  • Ortiz-Jaureguizar E, Cladera GA (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. J Arid Environ 66:498–532

    Google Scholar 

  • Patterson B (1934) Trachytherus, a typotherid from the Deseado beds of Patagonia. Field Mus Nat Hist Geol Ser 6:119–139

    Google Scholar 

  • Pérez ME (2010) A new rodent (Cavioidea, Hystricognathi) from the middle Miocene of Patagonia, mandibular homologies, and the origin of the crowngroup Cavioidea sensu stricto. J Vertebr Paleontol 30:1848–1859

    Google Scholar 

  • Popowics TE, Herring SW (2006) Teeth, jaws and muscles in mammalian mastication. In: Bels V (ed) Feeding in Domestic Vertebrates, from Structure to Behaviour. CABI Publishing, Cambridge, pp 61–83

    Google Scholar 

  • Quay WB (1954) The anatomy of the diastemal palate in microtine rodents. Misc Publ Mus Zool Univ Mich 86:5–49

    Google Scholar 

  • Raia P, Carotenuto F, Meloro C, Piras P, Pushinka D (2010) The shape of contention: adaptation, history, and contingency in ungulate mandibles. Evolution 64:1489–1503

    PubMed  Google Scholar 

  • Reguero MA (1993) Los Typotheria y Hegetotheria (Mammalia: Notoungulata) eocenos de la localidad Cañadón Blanco, Chubut. Ameghiniana 30:336

    Google Scholar 

  • Reguero MA, Candela AM, Cassini GH (2010) Hypsodonty and body size in rodent-like notoungulates. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 358–371

  • Reguero MA, Candela AM, Galli CI, Bonini R, Voglino D (2015) A new hypsodont notoungulate (Hegetotheriidae, Pachyrukhinae) from the late Miocene of the Eastern Cordillera, Salta province, northwest of Argentina. Andean Geol 42:56–70

  • Reguero MA, Cerdeño E (2005) New late Oligocene Hegetotheriidae (Mammalia, Notoungulata) from Salla, Bolivia. J Vertebr Paleontol 25:674–684

  • Reguero MA, Dozo MT, Cerdeño E (2007) Medistylus dorsatus (Ameghino, 1903), an enigmatic Pachyrukhinae (Hegetotheriidae, Notoungulata) from the Deseadan of the Chubut province, Argentina. Systematic and paleoecology. J Paleontol 81:1301–1307

  • Reguero MA, Prevosti FJ (2010) Rodent-like notoungulates (Typotheria) from Gran Barranca, Chubut Province, Argentina. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 148–165

  • Renvoisé E, Montuire S (2015) Developmental mechanisms in the evolution of phenotypic traits in rodent teeth. In: Cox PG, Hautier L (eds) Evolution of the Rodents: Advances in Phylogeny, Functional Morphology and Development. Cambridge University Press, Cambridge, pp 478–509

    Google Scholar 

  • Rocha-Barbosa O, Loguercio M, Casinos A, Silva Climaco das Chagas K, Abreu dos Santos J (2015) Ecomorphological and locomotor diversity in caviomorph rodents with emphasis on cavioids. In: Vassallo AI, Antenucci D (eds) Biology of Caviomorph Rodents: Diversity and Evolution. Sociedad Argentina para el Estudio de los Mamíferos (SAREM), Buenos Aires, pp 139–166

  • Rohlf FJ (2013) TpsDig, version 2.17. State University of New York at Stony Brook, New York. http://life.bio.sunysb.edu/morph/. Downloaded on 25th October 2017

  • Russell AP (1998) The mammalian masticatory apparatus: an introductory comparative exercise. In: Karcher SJ (ed) Tested Studies for Laboratory Teaching, Vol. 19, Proceedings of the 19th Workshop/Conference of the Association for Biology Laboratory Education, pp 1–365

  • Sargis EJ (2001) A preliminary qualitative analysis of the axial skeleton of tupaiids (Mammalia, Scandentia): functional morphology and phylogenetic implications. J Zool 253:473–483

    Google Scholar 

  • Scapino RP (1974) Function of the masseter-pterygoid raphe in carnivores. Anat Anz Bd S 136:430–446

  • Seckel L, Janis CM (2008) Convergences in scapula morphology among small cursorial mammals: an osteological correlate for locomotory specialization. J Mammal Evol 5:261–279

    Google Scholar 

  • Seoane FD, Cerdeño E (2019) Systematic revision of Hegetotherium and Pachyrukhos (Hegetotheriidae, Notoungulata) and a new phylogenetic analysis of Hegetotheriidae. J Syst Palaeontol 17: 1635–1663

    Google Scholar 

  • Seoane FD, Cerdeño E, Singleton H (2019) Re-assessment of the Oligocene genera Prosotherium and Propachyrucos (Hegetotheriidae, Notoungulata). CR Paleovol 18:643–662

  • Seoane FD, Roig Juñent S, Cerdeño E (2017) Phylogeny and paleobiogeography of Hegetotheriidae (Mammalia, Notoungulata). J Vertebr Paleontol 37:e1278547

  • Shockey BJ, Croft DA, Anaya F (2007) Analysis of function in the absence of extant functional homologues: a case study of mesotheriid notoungulates. Paleobiology 33:227–247

    Google Scholar 

  • Simpson GG (1945) A Deseado hegetothere from Patagonia. Am J Sci 243:550–564

    Google Scholar 

  • Sinclair WJ (1909a) Mammalia of the Santa Cruz beds. Typotheria I. In: Scott WB (ed) Reports of the Princeton University Expeditions to Patagonia, Vol. IV. Princeton University Press, Princeton, pp 333–460

  • Sinclair WJ (1909b) The Santa Cruz Typotheria. Proc Am Philos Soc 47:64–78

    Google Scholar 

  • Sisson S, Grossman JD (1930) The Anatomy of the Domestic Animals. W.B. Saunders Company, Philadelphia

  • Smith FA, Lyons SK, Ernest SK, Jones KE, Kaufman DM, Dayan T, Haskell JP (2003) Body mass of late Quaternary mammals. Ecology 84:3403–3403

    Google Scholar 

  • Solounias N, Moelleken SMC (1993) Dietary adaptations of some extinct ruminants determined by premaxillary shape. J Mammal 74:1059–1071

    Google Scholar 

  • Sosa LM, García López DA (2018) Structural variation of the masseter muscle in Typotheria (Mammalia, Notoungulata). Serie Correl Geol 34:53–70

    Google Scholar 

  • Strömberg CAE (2005) Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proc Natl Acad Sci USA102:11980–11984

  • Strömberg CAE (2011) Evolution of grasses and grassland ecosystems. Annu Rev Earth Planet Sci 39:517–544

    Google Scholar 

  • Strömberg CAE, Dunn RE, Madden RH, Kohn MJ, Carlini AA (2013) Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nature Commun 4:1478. doi: https://doi.org/10.1038/ncomms2508

    Article  CAS  Google Scholar 

  • Tennant JP, MacLeod N (2014) Snout shape in extant ruminants. PLoS ONE 9:e112035

    PubMed  PubMed Central  Google Scholar 

  • Thorington RW Jr, Darrow K (1996) Jaw muscles of Old World squirrels. J Morphol 230:145–165

  • Thorington RW Jr, Koprowski JL, Steele MA, Whatton JF (2012) Squirrels of the World. Johns Hopkins University Press, Baltimore

  • Timmins R, Duckworth JW (2015). Tragulus kanchil. The IUCN Red List of Threatened Species 2015: e.T136297A61978576. https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T136297A61978576.en. Downloaded on 17th July 2019

  • Tirado C, Cortés A, Miranda-Urbina E, Carretero MA (2012) Trophic preferences in an assemblage of mammal herbivores from Andean Puna (northern Chile). J Arid Environ 79:8–12

    Google Scholar 

  • Townsend B, Croft DA (2010) Middle Miocene mesotheriine diversity at Cerdas, Bolivia and a reconsideration of Plesiotypotherium minus. Palaeontol Electr 13(1):1–36

  • Townsend KEB, Croft DA (2008) Enamel microwear in caviomorph rodents. J Mammal 89:730–743

  • Turnbull WD (1970) Mammalian masticatory apparatus. Fieldiana Geol 18:147–356

    Google Scholar 

  • Upham NS, Patterson BD (2015) Phylogeny and evolution of caviomorph rodents: a complete timetree for living genera. In: Vassallo AI, Antenucci D (eds) Biology of Caviomorph Rodents: Diversity and Evolution. Sociedad Argentina para el Estudio de los Mamíferos (SAREM), Buenos Aires, pp 63–120

  • Valladares P, Spotorno AE, Cortes A, Zuleta C (2018) Chinchilla chinchilla (Rodentia: Chinchillidae). Mammal Species 50:51–58

    Google Scholar 

  • Vassallo AI, Verzi DH (2001) Patrones craneanos y modalidades de masticación en roedores caviomorfos (Rodentia, Caviomorpha). Bol Soc Biol Concepción, Chile 72:145–151

    Google Scholar 

  • Vera B, Ercoli MD (2018) Systematic and morphogeometric analyses of Pachyrukhinae (Mammalia, Hegetotheriidae) from the Huayquerías, Mendoza (Argentina): biostratigraphic and evolutionary implications. J Vertebr Paleontol 38:e1473410

    Google Scholar 

  • Verzi DH (1994) Origen y evolución de los Ctenomyinae (Rodentia: Octodontidae). Un análisis de anatomía cráneo-dentaria. Ph.D. dissertation, Universidad Nacional de La Plata, La Plata

    Google Scholar 

  • Verzi DH, Álvarez A, Olivares AI, Morgan CC, Vassallo AI (2010) Ontogenetic trajectories of key morphofunctional cranial traits in South American subterranean ctenomyid rodents. J Mammal 91:1508–1516

    Google Scholar 

  • Verzi DH, Olivares AI (2006) Craniomandibular joint in South American burrowing rodents (Ctenomyidae): adaptations and constraints related to a specialised mandibular position in digging. J Zool 270:488–501

    Google Scholar 

  • Verzi DH, Olivares, AI, Morgan CC, Álvarez A (2016) Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae. J Mammal Evol 23:93–115

    Google Scholar 

  • Vianey-Liaud M (1985) Possible evolutionary relationships among Eocene and lower Oligocene rodents of Asia, Europe and North America. In: Luckett WP, Hartenberger J-L (eds) Evolutionary Relationships among Rodents: A Multidisciplinary Analysis. Plenum Press, New York, pp 277–309

  • Vieytes EC, Morgan CC, Verzi DH (2007) Adaptive diversity of incisor enamel microstructure in South American burrowing rodents (family Ctenomyidae, Caviomorpha). J Anat 211:296–302

    PubMed  PubMed Central  Google Scholar 

  • Vivar E (2017) Ctenomys frater (errata version published in 2018). The IUCN Red List of Threatened Species 2017: e.T115553730A123796865. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T115553730A115553734.en. Downloaded on 22nd January 2019

  • Wahlert JH (1985) Cranial foramina of rodents. In: Luckett WP, Hartenberger J-L (eds) Evolutionary Relationships Among Rodents. A Multidisciplinary Analysis. Plenum Press, New York, pp 311–332

  • Wible JR (2007) On the cranial osteology of the Lagomorpha. Bull Carnegie Mus Nat Hist 2007:213–234

    Google Scholar 

  • Williams SH, Kay RF (2001) A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. J Mammal Evol 8:207–229

    Google Scholar 

  • Woods CA (1972) Comparative myology of jaw, hyoid, and pectoral appendicular regions of New and Old World hystricomorph rodents. Bull Am Mus Nat Hist 147:115–198

    Google Scholar 

  • Woods CA, Howland EB (1979) Adaptive radiation of capromyid rodents: anatomy of the masticatory apparatus. J Mammal 60:95–116

    Google Scholar 

  • Wyss AR, Flynn JJ, Norell MA, Swisher CC III, Charrier R, Novacek MJ, McKenna MC (1993) South America’s earliest rodent and the recognition of a new interval of mammalian evolution. Nature 365:434–437

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    CAS  PubMed  Google Scholar 

  • Zelditch ML, Li J, Swiderski DL (2020) Stasis of functionally versatile specialists. Evolution. Accepted manuscript. https://doi.org/10.1111/evo.13956

  • Zetti J (1972a) Observaciones sobre los Pachyrukhinae (Notoungulata) del Plioceno argentino. Publ Mus Munic Cs Nat Mar del Plata 2:41–52

    Google Scholar 

  • Zetti J (1972b) Un nuevo paquiruquino de la región pampeana. Publ Mus Munic Cs Nat Mar del Plata, 2:53–56

    Google Scholar 

Download references

Acknowledgments

The authors thank R. Bárquez, M. Díaz (CML), L. Chornogubsky, M. D. Ezcurra, P. Teta, G. Cassini, S. Lucero (MACN), M. Reguero (MLP), B. Patterson, W. Simpson (FMNH), N. Solís (IDGYM), M. Taglioretti, D. Romero (MMP), and P. Ortíz, (PVL) for granting access to specimens under their care; and N. Martino (MMP) and D. García López (PVL) for help during collection visits. We are very grateful to two anonymous reviewers, and the Editor-in-Chief J. Wible for their valuable comments and corrections that greatly improved this work. We thank S. Rosas (INECOA) for help with graphics issues, M. M. Morales and A. Elissamburu for access to specialized literature, M. I. Zamar and colleagues of the INBIAL for access to equipments necessary to describe strations, and M. Reguero and M. Taglioretti for help during the anatomical studies. A.A. thanks CONICET and Fulbright Commission, and M.D.E. acknowledges IOM, for financial support for visiting the FMNH collections. This work is a contribution to the financed projects 11/N865 (UNLP), PICT-2018-01237 (ANPCYT), and INECOA-PUE 2017 22920170100027CO (CONICET).

Author information

Authors and Affiliations

Authors

Contributions

MDE conceived the study; MDE and AA acquired all the images used and made the anatomical descriptions; MDE and AA wrote the manuscript. MDE and SRM built the figures. DY and AMC revised it critically. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marcos D. Ercoli.

Electronic Supplementary Material

Online resource 1.

Measurements taken for extant and extint specimens, in the lateral view of the cranium and mandible (a), ventral view of the cranium (b), and dorsal view of the mandible (c). See Materials and Methods for explanation of the abbreviations (PDF 429 kb)

Appendix 1 List of studied fossil and extant specimens. Preserved main regions are indicated in the case of fossil specimens: C = cranium, M = mandible

Appendix 1 List of studied fossil and extant specimens. Preserved main regions are indicated in the case of fossil specimens: C = cranium, M = mandible

Fossil specimens

Paedotherium bonaerense

MACN A 1251–52 (C, M), MACN A 7214 (C), MACN Pv 7520 (M), MACN Pv 18,098–100 (C); MLP 99-X-2-1 (C, M); IDGYM s/n (C, M); MMP 158-S (C), 1655-M (C); Cerdeño and Bond (1998) (C, M)

P. typicum

MACN Pv 5751 (M), MACN Pv 6436 (C, M), MACN Pv 10,513 (M), MLP 12–1782 (C, M), MLP 52-IX-28-14 (C), MMP 698-S (C, M), MMP 1008-M (C, M), PVL 3386 (C), Kraglievich (1926) (C, M), Cerdeño and Bond (1998) (C, M)

P. borrelloi

MLP 57-X-10-21 (C, M), 57-X-10-62 (M), 57-X-10-88 (C), 57-X-10-142 (M)

P. minor

MLP 26-IV-10-37 (M), MLP 29-IX-1-116 (C), MLP 29-IX-2-20 (C, M), MLP 29-IX-2-102 (M), MLP 29-IX-2-103 (M), MLP 29-IX-2-157 (C), MLP 55-IV-28-30 (C, M), MMP 464-M (M)

P. cf. P. minor

MLP 55-IV-28-82 (C)

Tremacyllus spp.

FMNH P 14456 (C, M), FMNH P 14465 (C); MACN Pv 2434 (C, M), MACN Pv 2913 (C), MACN PV 8157 (C, M), MACN Pv 7207 (M), MLP 95-III-31-15 (C, M)

Extant specimens

Cavia aperea

MACN Ma 27.7, MMP ND 83

Chinchilla chinchilla

MACN Ma 45.11, MACN Ma 16267

Ctenomys frater

CML 7235, MACN Ma 27.122

Cynomys ludovicianus

FMNH 14964, FMNH 58999

Heterohyrax brucei

FMNH 18842, FMNH 104600

Lepus capensis

FMNH 42407; MACN Ma 26084

Ratufa affinis

FMNH 68746, FMNH 68747

Tragulus kanchil

FMNH 68768, FMNH 68778

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercoli, M.D., Álvarez, A., Moyano, S.R. et al. Tracing the Paleobiology of Paedotherium and Tremacyllus (Pachyrukhinae, Notoungulata), the Latest Sciuromorph South American Native Ungulates – Part I: Snout and Masticatory Apparatus. J Mammal Evol 28, 377–409 (2021). https://doi.org/10.1007/s10914-020-09516-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-020-09516-7

Keywords

Navigation