Skip to main content
Log in

“Triangular Antiferromagnet” RbFe(MoO4)2 with the Replacement of Nonmagnetic Ions

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

The magnetization curves, as well as electron spin resonance and nuclear magnetic resonance spectra of 87Rb+ ions, have been measured in the quasi-two-dimensional antiferromagnet RbFe(MoO4)2 on a triangular lattice with the random modulation of the exchange bond network. Random modulation has been performed by means of the partial substitution of nonmagnetic Rb+ ions for K+ ions. It has been shown that random static disorder thus created at an impurity ion concentration of 15% drastically changes the spin structure. A noncollinear structure with significant sublattice magnetization components transverse to the magnetic field occurs in the doped compound. At the same time, the spin structure in the pure compound has the same magnetic moment, but transverse spin components disappear near a magnetic field of one third of the saturation field (three-sublattice structure with two upward sublattices and one downward sublattice). The revealed doping-induced drastic rearrangement of the spin structure of the triangular antiferromagnet has been explained by the interplay between the contribution of dynamic fluctuations, which makes maximally collinear states favorable in free energy, and the contribution from freeze-in disorder, which ensures the energy gain for the maximally noncollinear arrangement of sublattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. V. Chubukov and D. I. Golosov, J. Phys.: Condens. Matter 3, 69 (1991).

    ADS  Google Scholar 

  2. S. E. Korshunov, J. Phys. C: Solid State Phys. 19, 5927 (1986).

    Article  ADS  Google Scholar 

  3. E. F. Shender, Sov. Phys. JETP 56, 178 (1982).

    Google Scholar 

  4. V. S. Maryasin and M. E. Zhitomirsky, Phys. Rev. Lett. 111, 247201 (2013).

    Article  ADS  Google Scholar 

  5. L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, A. Micheler, N. Büttgen, A. Ya. Shapiro, and L. N. Demianets, Phys. Rev. B 74, 024412 (2006).

    Article  ADS  Google Scholar 

  6. L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, L. N. Demianets, and A. Ya. Shapiro, Phys. Rev. B 67, 094434 (2003).

    Article  ADS  Google Scholar 

  7. A. I. Smirnov, H. Yashiro, S. Kimura, M. Hagiwara, Y. Narumi, K. Kindo, A. Kikkawa, K. Katsumata, A. Ya. Shapiro, and L. N. Demianets, Phys. Rev. B 75, 134412 (2007).

    Article  ADS  Google Scholar 

  8. A.I. Smirnov, L. E. Svistov, L. A. Prozorova, O. A. Petrenko, and M. Hagiwara, Phys. Usp. 53, 844 (2010).

    Article  ADS  Google Scholar 

  9. M. Kenzelmann, G. Lawes, A. B. Harris, G. Gasparovic, C. Broholm, A. P. Ramirez, G. A. Jorge, M. Jaime, S. Park, Q. Huang, A. Ya. Shapiro, and L. A. Demianets, Phys. Rev. Lett. 98, 267205 (2007).

    Article  ADS  Google Scholar 

  10. J. S.White, Ch. Niedermayer, G. Gasparovic, C. Broholm, J. M. S. Park, A. Ya. Shapiro, L. N. Demianets, and M. Kenzelmann, Phys. Rev. B 88, 060409 (2013).

    Article  ADS  Google Scholar 

  11. L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, A. Ya. Shapiro, and L. N. Dem’yanets, JETP Lett. 80, 204 (2004).

    Article  ADS  Google Scholar 

  12. A. I. Smirnov, L. E. Svistov, L. A. Prozorova, A. Zheludev, M. D. Lumsden, E. Ressouche, O. A. Petrenko, K. Nishikawa, S. Kimura, M. Hagiwara, K. Kindo, A. Ya. Shapiro, and L. N. Demianets, Phys. Rev. Lett. 102, 037202 (2009).

    Article  ADS  Google Scholar 

  13. A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida, M. Hagiwara, M. E. Zhitomirsky, and A. Ya. Shapiro, Phys. Rev. Lett. 119, 047204 (2017).

    Article  ADS  Google Scholar 

  14. A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida, M. Hagiwara, M. E. Zhitomirsky, and A. Ya. Shapiro, J. Phys.: Conf. Ser. 969, 012115 (2018).

    Google Scholar 

  15. Yu. A. Sakhratov, M. Prinz-Zwick, D. Wilson, N. Büttgen, A. Ya. Shapiro, L. E. Svistov, and A. P. Reyes, Phys. Rev. B 99, 024419 (2019).

    Article  ADS  Google Scholar 

  16. L. E. Svistov, L. A. Prozorova, N. Büttgen, A. Ya. Shapiro, and L. N. Dem’yanets, JETP Lett. 81, 102 (2005).

    Article  ADS  Google Scholar 

  17. A. A. Bush, N. Büttgen, A. A. Gippius, V. N. Glazkov, W. Kraetschmer, L. A. Prozorova, L. E. Svistov, A. M. Vasiliev, and A. Zheludev, Phys. Rev. B 88, 104411 (2013).

    Article  ADS  Google Scholar 

  18. L. A. Prozorova, S. S. Sosin, L. E. Svistov, N. Büttgen, J. B. Kemper, A. P. Reyes, S. Riggs, A. Prokofiev, and O. A. Petrenko, Phys. Rev. B 91, 174410 (2015).

    Article  ADS  Google Scholar 

  19. T. Okuda, K. Uto, S. Seki, Y. Onose, Y. Tokura, R. Kajimoto, and M. Matsuda, J. Phys. Soc. Jpn. 80, 014711 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is a review of the results obtained in [13–15]. We are grateful to N. Büttgen, M. E. Zhitomirsky, O. A. Petrenko, A. P. Reyes, М. Hagiwara, and A. Ya. Shapiro for long-term close cooperation.

Funding

This work was supported by the Russian Science Foundation (project no. 17-12-01505, magnetization curves and electron spin resonance spectra) and by the Presidium of the Russian Academy of Sciences (NMR spectra).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. E. Svistov or A. I. Smirnov.

Ethics declarations

This article was prepared for the special issue dedicated to the centenary of A.S. Borovik-Romanov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatov, T.A., Sakhratov, Y.A., Svistov, L.E. et al. “Triangular Antiferromagnet” RbFe(MoO4)2 with the Replacement of Nonmagnetic Ions. J. Exp. Theor. Phys. 131, 62–70 (2020). https://doi.org/10.1134/S1063776120070122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120070122

Navigation