Skip to main content
Log in

Magnetic Resonance in Collective Paramagnets with Gapped Excitation Spectrum

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In some magnets, despite the presence of a strong exchange interaction between magnetic ions, conventional magnetic ordering does not occur, but a collective paramagnetic state is formed. If, due to the particular architecture of the exchange bonds, the ground state turns out to be a singlet state and is separated from the triplet excited states by a gap in the energy spectrum, then this state persists down to T = 0. The spin dynamics of collective paramagnets with gap excitation spectrum (spin-gap magnets) at low temperatures can be described as the behavior of a dilute gas of triplet excitations. The application of a sufficiently strong magnetic field can close the gap in the spectrum, which leads to a gapless spin liquid state, or even to the unusual phenomenon of the formation of field-induced antiferromagnetism. The introduction of impurities into a spin-gap magnet leads to the formation of a paramagnetic center in the vicinity of a defect or exchange bonds randomly distributed in the lattice. This review presents the results of the study of several characteristic representatives of the class of quantum paramagnets with gapped excitation spectrum by the EPR spectroscopy method: a quasi-two-dimensional antiferromagnet (C4H12N2)Cu2Cl6 and quasi-one-dimensional magnets of the spin tube, Cu2Cl4 ⋅ H8C4SO2, and the spin ladder, (C7H10N)2CuBr4, types. It has been shown that the electron spin resonance spectra make it possible to find common features in the behavior of these systems: to detect and characterize the fine structure of the energy levels of triplet excitations, to detect multiparticle relaxation processes in a gas of triplet excitations, and to observe the excitation of spin waves in the field-induced antiferromagnetically ordered state. Individual features of different systems are revealed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. H.-J. Mikeska and A. K. Kolezhuk, Lect. Notes Phys. 645, 1 (2004).

  2. V. Zapf and M. Jaime, Rev. Mod. Phys. 86, 563 (2014).

    ADS  Google Scholar 

  3. A. I. Smirnov and V. N. Glazkov, J. Exp. Theor. Phys. 105, 861 (2007).

    ADS  Google Scholar 

  4. D. J. Schmidiger, Doctoral Thesis (ETH, Zurich, 2014). https://doi.org/10.3929/ethz-a-010379214

  5. M. Oshikawa and I. Affleck, Phys. Rev. B 65, 134410 (2002).

    ADS  Google Scholar 

  6. S. C. Furuya and M. Sato, J. Phys. Soc. Jpn. 84, 033704 (2015).

    ADS  Google Scholar 

  7. O. Nohadani, S. Wessel, and S. Haas, Phys. Rev. Lett. 95, 227201 (2005).

    ADS  Google Scholar 

  8. T. Hong, A. Zheludev, H. Manaka, and L.-P. Regnault, Phys. Rev. B 81, 060410 (2010).

    ADS  Google Scholar 

  9. D. S. Fisher, Phys. Rev. B 50, 3799 (1994).

    ADS  Google Scholar 

  10. O. Motrunich, K. Damle, and D. A. Huse, Phys. Rev. B 63, 134424 (2001).

    ADS  Google Scholar 

  11. T. Shiroka, F. Casola, V. Glazkov, A. Zheludev, K. Prša, H.-R. Ott, and J. Mesot, Phys. Rev. Lett. 106, 137202 (2011).

    ADS  Google Scholar 

  12. M. Date and K. Kindo, Phys. Rev. Lett. 65, 1659 (1990).

    ADS  Google Scholar 

  13. S. A. Al’tshuler and B. M. Kozyrev, Electron Paramagnetic Resonance of Compounds of Elements of Intermediate Groups (Wiley, New York, 1974; Nauka, Moscow, 1972).

  14. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of the Transition Ions (Clarendon, Oxford, 1970).

    Google Scholar 

  15. T. Giamarchi, C. Ruegg, and O. Tchernyshyov, Nat. Phys. 4, 198 (2008).

    Google Scholar 

  16. H. Tanaka, A. Oosawa, T. Kato, H. Uekusa, Y. Ohashi, K. Kakurai, and A. Hoser, J. Phys. Soc. Jpn. 70, 939 (2001).

    ADS  Google Scholar 

  17. A. Oosawa, H. Aruga Katori, and H. Tanaka, Phys. Rev. B 63, 134416 (2001).

    ADS  Google Scholar 

  18. V. N. Glazkov, A. I. Smirnov, H. Tanaka, and A. Oosawa, Phys. Rev. B 69, 184410 (2004).

    ADS  Google Scholar 

  19. A. K. Kolezhuk, V. N. Glazkov, H. Tanaka, and A. Oosawa, Phys. Rev. B 70, 020403 (2004).

    ADS  Google Scholar 

  20. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC, Boca Raton, FL, 1996; Nauka, Moscow (1994).

  21. V. N. Glazkov, A. I. Smirnov, A. Kolezhuk, H. Tanaka, and A. Oosawa, J. Magn. Magn. Mater. 310, e454 (2007).

    ADS  Google Scholar 

  22. Z. G. Soos, K. T. McGregor, T. T. P. Cheung, and A. J. Silverstein, Phys. Rev. B 16, 3036 (1977).

    ADS  Google Scholar 

  23. M. A. Fayzullin, R. M. Eremina, M. V. Eremin, A. Dittl, N. van Well, F. Ritter, W. Assmus, J. Deisenhofer, H.-A. Krug von Nidda, and A. Loidl, Phys. Rev. B 88, 174421 (2013).

    ADS  Google Scholar 

  24. D. B. Chesnut and W. D. Phillips, J. Chem. Phys. 35, 1002 (1961).

    ADS  Google Scholar 

  25. M. Ozerov, M. Maksymenko, J. Wosnitza, A. Honecker, C. P. Landee, M. M. Turnbull, S. C. Furuya, T. Giamarchi, and S. A. Zvyagin, Phys. Rev. B 92, 241113(R) (2015).

  26. L. P. Battaglia, A. B. Corradi, U. Geiser, R. Willett, A. Motori, F. Sandrolini, L. Antolini, T. Manfredini, L. Menaube, and G. Pellacani, J. Chem. Soc. Dalton. Trans. 2, 265 (1988).

    Google Scholar 

  27. M. B. Stone, C. Broholm, D. H. Reich, P. Schiffer, O. Tchernyshyov, P. Vorderwisch, and N. Harrison, New J. Phys. 9, 31 (2007).

    ADS  Google Scholar 

  28. M. B. Stone, I. Zaliznyak, D. H. Reich, and C. Broholm, Phys. Rev. B 64, 144405 (2001).

    ADS  Google Scholar 

  29. M. Thede, A. Mannig, M. Mansson, D. Hüvonen, R. Khasanov, E. Morenzoni, and A. Zheludev, Phys. Rev. Lett. 112, 087204 (2014).

    ADS  Google Scholar 

  30. G. Perren, J. S. Moller, D. Hüvonen, A. A. Podlesnyak, and A. Zheludev, Phys. Rev. B 92, 054413 (2015).

    ADS  Google Scholar 

  31. T. Hong, C. Stock, I. Cabrera, C. Broholm, Y. Qiu, J. B. Leao, S. J. Poulton, and J. R. D. Copley, Phys. Rev. B 82, 184424 (2010).

    ADS  Google Scholar 

  32. T. Yankova, D. Hüvonen, S. Mühlbauer, D. Schmidiger, E. Wulf, S. Zhao, A. Zheludev, T. Hong, V. O. Garlea, R. Custelcean, and G. Ehlers, Philos. Mag. 92, 2629 (2012).

    ADS  Google Scholar 

  33. V. N. Glazkov, T. S. Yankova, J. Sichelschmidt, D. Hüvonen, and A. Zheludev, Phys. Rev. B 85, 054415 (2012).

    ADS  Google Scholar 

  34. D. Hüvonen, G. Ballon, and A. Zheludev, Phys. Rev. B 88, 094402 (2013).

    ADS  Google Scholar 

  35. D. Hüvonen, S. Zhao, M. Månsson, T. Yankova, E. Ressouche, C. Niedermayer, M. Laver, S. N. Gva-saliya, and A. Zheludev, Phys. Rev. B 85, 100410(R) (2012).

  36. D. Hüvonen, S. Zhao, G. Ehlers, M. Månsson, S. N. Gvasaliya, and A. Zheludev, Phys. Rev. B 86, 214408 (2012).

    ADS  Google Scholar 

  37. V. N. Glazkov, Yu. V. Krasnikova, D. Huvonen, and A. Zheludev, J. Phys.: Conf. Ser. 969, 012104 (2018).

    Google Scholar 

  38. V. N. Glazkov, Yu. V. Krasnikova, D. Huvonen, and A. Zheludev, J. Phys.: Condens. Matter 28, 206003 (2016).

    ADS  Google Scholar 

  39. V. N. Glazkov, G. Skoblin, D. Huvonen, T. S. Yankova, and A. Zheludev, J. Phys.: Condens. Matter 26, 486002 (2014).

    Google Scholar 

  40. M. Fujisawa, A. Asakura, S. Okubo, H. Ohta, S. Nishihara, T. Akutagawa, T. Nakamura, and Yu. Hosokoshi, J. Phys.: Conf. Ser. 150, 042034 (2009).

    Google Scholar 

  41. M. Fujisawa, J.-I. Yamaura, H. Tanaka, H. Kageyama, Y. Narumi, and K. Kindo, J. Phys. Soc. Jpn. 72, 694 (2003).

    ADS  Google Scholar 

  42. A. Zheludev, V. O. Garlea, A. Tsvelik, L.-P. Regnault, K. Habicht, K. Kiefer, and B. Roessli, Phys. Rev. B 80, 214413 (2009).

    ADS  Google Scholar 

  43. V. O. Garlea, A. Zheludev, L.-P. Regnault, J.-H. Chung, Y. Qiu, M. Boehm, K. Habicht, and M. Meissner, Phys. Rev. Lett. 100, 037206 (2008).

    ADS  Google Scholar 

  44. M. Fujisawa, K. Shiraki, S. Okubo, H. Ohta, M. Yoshida, H. Tanaka, and T. Sakai, Phys. Rev. B 80, 012408 (2009).

    ADS  Google Scholar 

  45. M. Fujisawa, Doctoral Thesis (Tokyo Inst. Technol., Tokyo, 2006).

  46. M. Fujisawa, H. Tanaka, and T. Sakakibara, Progr. Theor. Phys. Suppl. 159, 212 (2005).

    ADS  Google Scholar 

  47. V. O. Garlea, A. Zheludev, K. Habicht, M. Meissner, B. Grenier, L.-P. Regnault, and E. Ressouche, Phys. Rev. B 79, 060404(R) (2009).

  48. F. Schrettle, S. Krohns, P. Lunkenheimer, A. Loidl, E. Wulf, T. Yankova, and A. Zheludev, Phys. Rev. B 87, 121105(R) (2013).

  49. A. F. Andreev and V. I. Marchenko, Sov. Phys. Usp. 23, 21 (1980).

    ADS  Google Scholar 

  50. L. E. Svistov, L. A. Prozorova, A. M. Farutin, A. A. Gippius, K. S. Okhotnikov, A. A. Bush, K. E. Kamentsev, and E. A. Tishchenko, J. Exp. Theor. Phys. 108, 1000 (2009).

    ADS  Google Scholar 

  51. A. Shapiro, C. P. Landee, M. M. Turnbull, J. Jornet, M. Deumal, J. J. Novoa, M. A. Robb, and W. Lewis, J. Am. Chem. Soc. 129, 952 (2007).

    Google Scholar 

  52. D. Schmidiger, P. Bouillot, S. Mühlbauer, S. Gvasaliya, C. Kollath, T. Giamarchi, and A. Zheludev, Phys. Rev. Lett. 108, 167201 (2012).

    ADS  Google Scholar 

  53. J. L. White, C. Lee, Ö. Günaydin-Çen, L. C. Tung, H. M. Christen, Y. J. Wang, M. M. Turnbull, C. P. Landee, R. D. McDonald, S. A. Crooker, J. Singleton, M.-H. Whangbo, and J. L. Musfeldt, Phys. Rev. B 81, 052407 (2010).

    ADS  Google Scholar 

  54. D. Schmidiger, P. Bouillot, T. Guidi, R. Bewley, C. Kollath, T. Giamarchi, and A. Zheludev, Phys. Rev. Lett. 111, 107202 (2013).

    ADS  Google Scholar 

  55. T. Hong, Y. H. Kim, C. Hotta, Y. Takano, G. Tremelling, M. M. Turnbull, C. P. Landee, H.-J. Kang, N. B. Christensen, K. Lefmann, K. P. Schmidt, G. S. Uhrig, and C. Broholm, Phys. Rev. Lett. 105, 137207 (2010).

    ADS  Google Scholar 

  56. D. Schmidiger, S. Mühlbauer, S. N. Gvasaliya, T. Yankova, and A. Zheludev, Phys. Rev. B 84, 144421 (2011).

    ADS  Google Scholar 

  57. V. N. Glazkov, M. Fayzullin, Yu. Krasnikova, G. Skoblin, D. Schmidiger, S. Mühlbauer, and A. Zheludev, Phys. Rev. B 92, 184403 (2015).

    ADS  Google Scholar 

  58. D. Schmidiger, K. Yu. Povarov, S. Galeski, N. Reynolds, R. Bewley, T. Guidi, J. Ollivier, and A. Zheludev, Phys. Rev. Lett. 116, 257203 (2016).

    ADS  Google Scholar 

  59. S. Miyashita and S. Yamamoto, Phys. Rev. B 48, 913 (1993).

    ADS  Google Scholar 

  60. H. Fukuyama, T. Tanimoto, and M. Saito, J. Phys. Soc. Jpn. 65, 1182 (1996).

    ADS  Google Scholar 

  61. Yu. V. Krasnikova, V. N. Glazkov, A. Ponomaryov, S. A. Zvyagin, K. Yu. Povarov, S. Galeski, and A. Zheludev, Phys. Rev. B 100, 144446 (2019).

    ADS  Google Scholar 

  62. Yu. V. Krasnikova, V. N. Glazkov, M. A. Fayzullin, D. Schmidiger, K. Yu. Povarov, S. Galeski, and A. Zheludev, J. Phys.: Conf. Ser. 969, 012113 (2018).

    Google Scholar 

  63. T. C. Ozawa and S. J. Kang, J. Appl. Crystallogr. 37, 679 (2004). http://toycrate.web.fc2.com/bs/index.html.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to A. Zheludev (ETH-Zürich) for participating in the studies included in the review: the results presented here could not have been obtained without the samples grown at the Laboratory for Neutron Scattering and Magnetism, ETH-Zürich, a combination of techniques available at the Laboratory for Neutron Scattering and Magnetism, ETH-Zürich, with the studies by the EPR spectroscopy technique at the Institute for Physical Problems, Russian Academy of Sciences, allowed the study of the arising phenomena in their entirety.

The author is grateful to his colleagues T. Yankova (Moscow State University), Yu. Krasnikova and G. Skoblin (Institute for Physical Problems, Russian Academy of Sciences), D. Hüvonen, E. Wulf, С Mühlbauer, D. Schmidiger, and K. Povarov (ETH-Zürich), and J. Sichelschmidt (MPI-CPFS, Dresden) for their participation in these studies. The author is grateful to A.I. Smirnov, L.E. Svistov, A.B. Drovosekov, and T.A. Soldatov (Institute for Physical Problems, Russian Academy of Sciences) for their help in setting up the experiment and numerous discussions.

The crystal structures were drawn by the Balls and Sticks program [63].

Funding

The studies presented in the review were supported by the Russian Foundation for Basic Research (project nos. 15-02-05918 and 19-02-00194), the Russian Science Foundation (project no. 17-12-01505), and the Swiss National Science Foundation, Division 2. The new experimental results on EPR at T < 1 K in (C4H12N2)Cu2Cl6 and Cu2Cl4 ⋅ H8C4SO2 were obtained with the support of the Russian Science Foundation (project no. 17-12-01505). The review was prepared with the support of the Russian Foundation for Basic Research (project no. 19-02-00194) and the Program of the Presidium of the Russian Academy of Sciences “Topical Problems of Low-Temperature Physics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Glazkov.

Ethics declarations

This article was prepared for the special issue dedicated to the centenary of A.S. Borovik-Romanov.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazkov, V.N. Magnetic Resonance in Collective Paramagnets with Gapped Excitation Spectrum. J. Exp. Theor. Phys. 131, 46–61 (2020). https://doi.org/10.1134/S1063776120070067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120070067

Navigation