Skip to main content
Log in

Transport Properties of Magnetic Nanogranular Composites with Dispersed Ions in an Insulating Matrix

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This review is devoted to an analysis of the electrical resistance, the magnetoresistance, and the anomalous Hall effect in magnetic “ferromagnetic metal–insulator” nanocomposites at a metal content near the percolation threshold and the memristive properties of the capacitor structures based on these nanocomposites. A high content (up to 1022 cm–3) of dispersed atoms in intergranular gaps leads to a logarithmic temperature dependence of the electrical resistance, a positive contribution to the magnetoresistance, the appearance of tunneling anomalous Hall effect, and a multifilament mechanism of resistive switching (which causes an adaptive character of memristor nanocomposites with dispersed atoms).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. Milner, A. Gerber, B. Groisman, M. Karpovsky, and A. Gladkikh, Phys. Rev. Lett. 76, 475 (1996).

    ADS  Google Scholar 

  2. N. Kobayashi, S. Ohnuma, T. Masumoto, and H. Fujimori, J. Appl. Phys. 90, 4159 (2001).

    ADS  Google Scholar 

  3. A. Pakhomov, X. Yan, and B. Zhao, Appl. Phys. Lett. 67, 3497 (1995).

    ADS  Google Scholar 

  4. B. A. Aronzon, D. Yu. Kovalev, A. N. Lagar’kov, E. Z. Meilikhov, V. V. Ryl’kov, M. V. Sedova, N. Negre, M. Goiran, and J. Leotin, JETP Lett. 70, 90 (1999).

    ADS  Google Scholar 

  5. B. A. Aronzon, A. B. Granovski, D. Yu. Kovalev, E. Z. Meilikhov, V. V. Ryl’kov, and M. A. Sedova, JETP Lett. 71, 469 (2000).

    ADS  Google Scholar 

  6. A. B. Granovskii, I. V. Bykov, E. A. Gan’shina, V. S. Gushchin, M. Inue, Yu. E. Kalinin, A. A. Kozlov, and A. N. Yurasov, J. Exp. Theor. Phys. 96, 1104 (2003).

    ADS  Google Scholar 

  7. E. A. Gan’shina, M. V. Vashuk, A. N. Vinogradov, A. B. Granovsky, V. S. Gushchin, P. N. Shcherbak, Yu. E. Kalinin, A. V. Sitnikov, Ch. O. Kim, and Ch. G. Kim, J. Exp. Theor. Phys. 98, 1027 (2004).

    ADS  Google Scholar 

  8. S. Bedanta, T. Eimüller, W. Kleemann, J. Rhensius, F. Stromberg, E. Amaladass, S. Cardoso, and P. P. Freitas, Phys. Rev. Lett. 98, 176601 (2007).

    ADS  Google Scholar 

  9. S. Bedanta and W. Kleemann, J. Phys. D 42, 013001 (2009).

    ADS  Google Scholar 

  10. V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, K. E. Nikirui, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasil’ev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovskii, V. V. Tugushev, and A. S. Bugaev, J. Exp. Theor. Phys. 126, 353 (2018).

    ADS  Google Scholar 

  11. V. V. Rylkov, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Novel Magnetic Nanostructures: Unique Properties and Applications, Ed. by N. Domracheva, M. Caporali, and E. Rentschler (Elsevier, Amsterdam, 2018), Chap. 13, p. 427.

    Google Scholar 

  12. K. E. Nikiruy, A. V. Emelyanov, V. V. Rylkov, A. V. Sitnikov, and V. A. Demin, Tech. Phys. Lett. 45, 386 (2019).

    ADS  Google Scholar 

  13. K. E. Nikiruy, A. V. Emelyanov, V. A. Demin, A. V. Sitnikov, A. A. Minnekhanov, V. V. Rylkov, P. K. Kashkarov, and M. V. Kovalchuk, AIP Adv. 9, 065116 (2019).

    ADS  Google Scholar 

  14. A. V. Emelyanov, K. E. Nikiruy, A. V. Serenko, A. V. Sitnikov, M. Yu. Presnyakov, R. B. Rybka, A. G. Sboev, V. V. Rylkov, P. K. Kashkarov, M. V. Kovalchuk, and V. A. Demin, Nanotechnology 31, 045201 (2020).

    ADS  Google Scholar 

  15. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).

    ADS  Google Scholar 

  16. J. del Valle, J. G. Ramírez, M. J. Rozenberg, and I. K. Schuller, J. Appl. Phys. 124, 211101 (2018).

    Google Scholar 

  17. Q. Xia and J. J. Yang, Nat. Mater. 18, 309 (2019).

    ADS  Google Scholar 

  18. Handbook of Memristor Networks, Ed. by L. Chua, G. Ch. Sirakoulis, and A. Adamatzky (Springer, Cham, 2019).

    Google Scholar 

  19. B. Raquet, M. Goiran, N. Negre, J. Leotin, B. Aronzon, V. Rylkov, and E. Meilikhov, Phys. Rev. B 62, 17144 (2000).

    ADS  Google Scholar 

  20. V. V. Rylkov, B. A. Aronzon, A. B. Davydov, D. Yu. Kovalev, and E. Z. Meilikhov, J. Exp. Theor. Phys. 94, 779 (2002).

    ADS  Google Scholar 

  21. I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).

    ADS  Google Scholar 

  22. C. J. Adkins, in Metal–Insulator Transitions, Ed. by P. P. Edwards and C. N. R. Rao (Taylor and Francis, London, 1995), p. 191.

    Google Scholar 

  23. J. E. Morris and T. J. Coutts, Thin Solid Films 47, 3 (1977).

    ADS  Google Scholar 

  24. B. Abeles, Ping Sheng, M. D. Coutts, and Y. Arie, Adv. Phys. 24, 407 (1975).

    ADS  Google Scholar 

  25. S. A. Gridnev, Yu. E. Kalinin, and A. V. Sitnikov, Nonlinear Phenomena in Nano- and Microheterogeneous Systems (BINOM, Moscow, 2012) [in Russian].

    Google Scholar 

  26. V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V. A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).

    ADS  Google Scholar 

  27. V. V. Rylkov, A. V. Sitnikov, S. N. Nikolaev, V. A. Demin, A. N. Taldenkov, M. Yu. Presnyakov, A. V. Emelyanov, A. L. Vasiliev, Yu. E. Kalinin, A. S. Bugaev, V. V. Tugushev, and A. B. Granovsky, J. Magn. Magn. Mater. 459, 197 (2018).

    ADS  Google Scholar 

  28. V. A. Levanov, A. V. Emel’yanov, V. A. Demin, K. E. Nikirui, A. V. Sitnikov, S. N. Nikolaev, A. S. Vedeneev, Yu. E. Kalinin, and V. V. Ryl’kov, J. Commun. Technol. Electron. 63, 491 (2018).

    Google Scholar 

  29. E. Lähderanta, M. Guc, M. A. Shakhov, E. Arushanov, and K. G. Lisunov, J. Appl. Phys. 120, 035704 (2016).

    ADS  Google Scholar 

  30. K. B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).

    ADS  Google Scholar 

  31. D. Bartov, A. Segal, M. Karpovski, and A. Gerber, Phys. Rev. B 90, 144423 (2014).

    ADS  Google Scholar 

  32. V. Rylkov, A. Sitnikov, S. Nikolaev, A. Emelyanov, K. Chernohlazov, K. Nikiruy, A. Drovosekov, M. Blinov, E. Fadeev, A. Taldenkov, V. Demin, A. Vedeneev, A. Bugaev, and A. Granovsky, IEEE Magn. Lett. 10, 2509504 (2019).

    Google Scholar 

  33. V. V. Rylkov, A. B. Drovosekov, A. N. Taldenkov, S. N. Nikolaev, O. G. Udalov, A. V. Emelyanov, A. V. Sitnikov, K. Yu. Chernoglazov, V. A. Demin, O. A. Novodvorskii, A. S. Vedeneev, and A. S. Bugaev, J. Exp. Theor. Phys. 128, 115 (2019).

    ADS  Google Scholar 

  34. Yu. O. Mikhailovskii, V. N. Prudnikov, V. V. Ryl’kov, K. Yu. Chernoglazov, A. V. Sitnikov, Yu. E. Kalinin, and A. B. Granovskii, Phys. Solid State 58, 444 (2016).

    ADS  Google Scholar 

  35. S. N. Nikolaev, K. Yu. Chernoglazov, V. A. Demin, N. K. Chumakov, V. A. Levanov, A. A. Magomedova, A. V. Sitnikov, Yu. E. Kalinin, A. B. Granovskii, and V. V. Ryl’kov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 549 (2017).

    Google Scholar 

  36. M. I. Blinov, M. A. Shakhov, V. V. Rylkov, E. Lähderanta, V. N. Prudnikov, S. N. Nikolaev, A. V. Sitnikov, and A. B. Granovsky, J. Magn. Magn. Mater. 469, 155 (2019).

    ADS  Google Scholar 

  37. T. Mitsuyu and K. Wasa, Jpn. J. Appl. Phys. 20, L48 (1981).

    ADS  Google Scholar 

  38. Yu. A. Kalinin, A. N. Remizov, and A. V. Sitnikov, Phys. Solid State 46, 2146 (2004).

    ADS  Google Scholar 

  39. A. V. Vedyayev, N. Ryzhanova, N. Strelkov, and B. Dieny, Phys. Rev. Lett. 110, 247204 (2013).

    ADS  Google Scholar 

  40. A. Gerber, I. Kishon, I. Ya. Korenblit, O. Riss, A. Segal, and M. Karpovski, Phys. Rev. Lett. 99, 027201 (2007).

    ADS  Google Scholar 

  41. J. Inoue and S. Maekawa, Phys. Rev. Lett. 53, R11927 (1996).

    ADS  Google Scholar 

  42. J. S. Helman and B. Abeles, Phys. Rev. Lett. 39, 1429 (1976).

    ADS  Google Scholar 

  43. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).

    ADS  Google Scholar 

  44. Y. Tian, L. Ye, and X. Jin, Phys. Rev. Lett. 103, 087206 (2009).

    ADS  Google Scholar 

  45. D. Chiba, A. Werpachowska, M. Endo, Y. Nishitani, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. Lett. 104, 106601 (2010).

    ADS  Google Scholar 

  46. X. Liu, S. Shen, Z. Ge, W. L. Lim, M. Dobrowolska, and J. K. Furdyna, Phys. Rev. B 83, 144421 (2011).

    ADS  Google Scholar 

  47. A. Shitade and N. Nagaosa, J. Phys. Soc. Jpn. 81, 083704 (2012).

    ADS  Google Scholar 

  48. Yu. A. Mikhailovskii, D. E. Mettus, A. P. Kazakov, V. N. Prudnikov, Yu. E. Kalinin, A. S. Sitinikov, A. Gerber, D. Bartov, and A. B. Granovskii, JETP Lett. 97, 473 (2013).

    ADS  Google Scholar 

  49. L. N. Oveshnikov, V. A. Kul’bachinskii, A. B. Davydov, and B. A. Aronzon, JETP Lett. 100, 570 (2014).

    ADS  Google Scholar 

  50. S. A. Meynell, M. N. Wilson, J. C. Loudon, A. Spitzig, F. N. Rybakov, M. B. Johnson, and T. L. Monchesky, Phys. Rev. B 90, 224419 (2014).

    ADS  Google Scholar 

  51. D. Hou, G. Su, Y. Tian, X. Jin, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 114, 217203 (2015).

    ADS  Google Scholar 

  52. J. G. Checkelsky, M. Lee, E. Morosan, R. J. Cava, and N. P. Ong, Phys. Rev. B 77, 014433 (2008).

    ADS  Google Scholar 

  53. S. Onoda, N. Sugimoto, and N. Nagaosa, Phys. Rev. Lett. 97, 126602 (2006);

    ADS  Google Scholar 

  54. Phys. Rev. B 77, 165103 (2008).

  55. A. V. Vedyaev, A. B. Granovskii, and O. A. Kotel’nikova, Kinetic Phenomena in Disordered Ferromagnetic Alloys (Mosk. Gos. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  56. A. V. Vedyaev, A. B. Granovskii, A. V. Kalitsov, and F. Bauers, J. Exp. Theor. Phys. 85, 1204 (1997).

    ADS  Google Scholar 

  57. A. V. Vedyaev and A. B. Granovskii, Sov. Phys. Solid State 28, 1293 (1986).

    Google Scholar 

  58. T. Holstein, Phys. Rev. 124, 1329 (1961).

    ADS  Google Scholar 

  59. X.-J. Liu, X. Liu, and J. Sinova, Phys. Rev. B 84, 165304 (2011).

    ADS  Google Scholar 

  60. H. Meier, M. Yu. Kharitonov, and K. B. Efetov, Phys. Rev. B 80, 045122 (2009).

    ADS  Google Scholar 

  61. A. V. Vedyayev, M. S. Titova, N. V. Ryzhanova, M. Ye. Zhuravlev, and E. Y. Tsymbal, Appl. Phys. Lett. 103, 032406 (2013).

    ADS  Google Scholar 

  62. A. Matos-Abiague and J. Fabian, Phys. Rev. Lett. 115, 056602 (2015).

    ADS  MathSciNet  Google Scholar 

  63. T. Huong Dang, H. Jaffres, T. L. Hoai Nguyen, and H.-J. Drouhin, Phys. Rev. B 92, 060403(R) (2015).

  64. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 1984; Moscow, Nauka, 1979).

  65. Z. B. Yan and J.-M. Liu, Sci. Rep. 3, 2482 (2013).

    ADS  Google Scholar 

  66. Y. Shuai, Y. Peng, X. Pan, L. Jin, C. Wu, W. Luo, H. Zeng, and W. Zhang, Jpn. J. Appl. Phys. 57, 121502 (2018).

    ADS  Google Scholar 

  67. H. Y. Yoong, H. Wu, J. Zhao, H. Wang, R. Guo, J. Xiao, B. Zhang, P. Yang, S. J. Pennycook, N. Deng, X. Yan, and J. Chen, Adv. Funct. Mater. 28, 1806037 (2018).

    Google Scholar 

  68. M. Qian, I. Fina, M. C. Sulzbach, F. Sánchez, and J. Fontcuberta, Adv. Electron. Mater. 5, 1800646 (2019).

    Google Scholar 

  69. D. A. Lapkin, A. V. Emelyanov, V. A. Demin, V. V. Erokhin, P. K. Kashkarov, M. V. Kovalchuk, and L. A. Feigin, Appl. Phys. Lett. 112, 043302 (2018).

    ADS  Google Scholar 

  70. A. S. Vedeneev, V. V. Rylkov, K. S. Napolskii, A. P. Leontiev, A. A. Klimenko, A. M. Kozlov, V. A. Luzanov, S. N. Nikolaev, M. P. Temiryazeva, and A. S. Bugaev, JETP Lett. 106, 411 (2017).

    ADS  Google Scholar 

  71. Y. Kalcheim, N. Butakov, N. M. Vargas, M.-H. Lee, J. del Valle, J. Trastoy, P. Salev, J. Schuller, and I. K. Schuller, Phys. Rev. Lett. 122, 057601 (2019).

    ADS  Google Scholar 

  72. H. Jiang, L. Han, P. Lin, Zh. Wang, M. J. Jang, Q. Wu, M. Barnell, J. J. Yang, H. L. Xin, and Q. Xia, Sci. Rep. 6, 28525 (2016).

    ADS  Google Scholar 

  73. A. A. Minnekhanov, B. S. Shvetsov, M. M. Martyshov, K. E. Nikiruy, E. V. Kukueva, M. Yu. Presnyakov, P. A. Forsh, V. V. Rylkov, V. V. Erokhin, V. A. Demin, and A. V. Emelyanov, Org. Electron. 74, 89 (2019).

    Google Scholar 

  74. W. Xue, S. Gao, J. Shang, X. Yi, G. Liu, and R.-W. Li, Adv. Electron. Mater. 5, 1800854 (2019).

    Google Scholar 

  75. B. J. Choi, A. C. Torrezan, K. J. Norris, F. Miao, J. P. Strachan, M.-X. Zhang, D. A. A. Ohlberg, N. P. Kobayashi, J. J. Yang, and R. S. Williams, Nano Lett. 13, 3213 (2013).

    ADS  Google Scholar 

  76. W. Li, X. Liu, Y. Wang, Z. Dai, W. Wu, L. Cheng, Y. Zhang, Q. Liu, X. Xiao, and C. Jiang, Appl. Phys. Lett. 108, 153501 (2016).

    ADS  Google Scholar 

  77. M. N. Martyshov, A. V. Emelyanov, V. A. Demin, A. A. Minnekhanov, S. N. Nikolaev, K. E. Nikiruy, A. V. Ovcharov, M. Yu. Presnyakov, A. V. Sitnikov, A. L. Vasiliev, P. A. Forsh, A. B. Granovskiy, P. K. Kashkarov, M. V. Kovalchuk, and V. V. Rylkov, arxiv: 1912.03726.

  78. S. D. Ha and S. Ramanathan, J. Appl. Phys. 110, 071101 (2011).

    ADS  Google Scholar 

  79. W. Gerstner and W. M. Kistler, Spiking Neuron Models (Cambridge Univ. Press, Cambridge, 2002).

    MATH  Google Scholar 

  80. P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, and F. Akopyan, Science (Washington, DC, U. S.) 345, 668 (2014).

    ADS  Google Scholar 

  81. S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, Proc. IEEE 102, 652 (2014).

    Google Scholar 

  82. M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. D. Mathaikutty, S. Mccoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng, A. Wild, and Y. Yang, IEEE Micro 38, 82 (2018).

    Google Scholar 

  83. G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K. Krishnamurthy, IEEE J. Solid State Circuits 54, 992 (2019).

    ADS  Google Scholar 

  84. D. Ielmini and H. P. S. Wong, Nat. Electron. 1, 333 (2018).

    Google Scholar 

  85. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, Nature (London, U.K.) 521, 61 (2015).

    ADS  Google Scholar 

  86. A. V. Emelyanov, D. A. Lapkin, V. A. Demin, V. V. Erokhin, S. Battistoni, G. Baldi, A. Dimonte, A. N. Korovin, S. Iannotta, P. K. Kashkarov, and M. V. Kovalchuk, AIP Adv. 6, 111301 (2016).

    ADS  Google Scholar 

  87. C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C. E. Graves, Z. Li, J. P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. S. Williams, J. J. Yang, and Q. Xia, Nat. Electron. 1, 52 (2018).

    Google Scholar 

  88. F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, and Z. Zhang, Nat. Electron. 2, 290 (2019).

    Google Scholar 

  89. C. Li, Z. Wang, M. Rao, D. Belkin, W. Song, and H. Jiang, Nat. Mach. Intell. 1, 49 (2019).

    Google Scholar 

  90. G. Pedretti, V. Milo, S. Ambrogio, R. Carboni, S. Bianchi, A. Calderoni, N. Ramaswamy, A. S. Spinelli, and D. Ielmini, Sci. Rep. 7, 5288 (2017).

    ADS  Google Scholar 

  91. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, K. Likharev, and D. B. Strukov, Sci. Rep. 6, 21331 (2016).

    ADS  Google Scholar 

  92. D. A. Lapkin, A. V. Emelyanov, V. A. Demin, T. S. Berzina, and V. V. Erokhin, Microelectron. Eng. 43, 185 (2018).

    Google Scholar 

  93. A. V. Emelyanov, K. E. Nikiruy, V. A. Demin, V. V. Rylkov, A. I. Belov, D. S. Korolev, E. G. Gryaznov, D. A. Pavlov, O. N. Gorshkov, A. N. Mikhaylov, and P. Dimitrakis, Microelectron. Eng. 215, 110988 (2019).

    Google Scholar 

  94. Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J. H. Yoon, N. K. Upadhyay, et al., Nat. Electron. 1, 137 (2018).

    Google Scholar 

  95. M. Prezioso, M. R. Mahmoodi, F. Merrikh-Bayat, H. Nili, H. Kim, A. F. Vincent, and D. B. Strukov, Nat. Commun. 9, 5311 (2018).

    ADS  Google Scholar 

  96. S. Brivio, D. Conti, M. V. Nair, J. Frascaroli, E. Covi, C. Ricciardi, G. Indiveri, and S. Spiga, Nanotechnology 30, 015102 (2019).

    ADS  Google Scholar 

  97. E. Covi, S. Brivio, A. Serb, T. Prodromakis, M. Fanciulli, and S. Spiga, Front. Neurosci. 10, 482 (2016).

    Google Scholar 

  98. K. E. Nikiruy, A. V. Emelyanov, V. A. Demin, V. V. Rylkov, A. V. Sitnikov, and P. K. Kashkarov, Tech. Phys. Lett. 44, 416 (2018).

    ADS  Google Scholar 

  99. G. Hennequin, E. J. Agnes, and T. P. Vogels, Ann. Rev. Neurosci. 40, 557 (2017).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 16-19-10233) and was performed on the equipment of the Resource centers of the National Research Centre Kurchatov Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Rylkov or A. B. Granovsky.

Ethics declarations

This article was prepared for the special issue dedicated to the centenary of A.S. Borovik-Romanov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rylkov, V.V., Emelyanov, A.V., Nikolaev, S.N. et al. Transport Properties of Magnetic Nanogranular Composites with Dispersed Ions in an Insulating Matrix. J. Exp. Theor. Phys. 131, 160–176 (2020). https://doi.org/10.1134/S1063776120070109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120070109

Navigation