Skip to main content
Log in

The Problem of Generalized D-Stability in Unbounded LMI Regions and Its Computational Aspects

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We generalize the concepts of D-stability and additive D-stability of matrices. For this, we consider a family of unbounded regions defined in terms of Linear Matrix Inequalities (so-called LMI regions). We study the problem when the localization of a matrix spectrum in an unbounded LMI region is preserved under specific multiplicative and additive perturbations of the initial matrix. The most well-known particular cases of unbounded LMI regions (namely, conic sectors and shifted halfplanes) are considered. A new D-stability criterion as well as sufficient conditions for generalized D-stability are analyzed. Several applications of the developed theory to dynamical systems are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abed, E.H.: Strong \(D\)-stability. Syst. Control Lett. 7, 207–212 (1986)

    MATH  Google Scholar 

  2. Abed, E.H.: Singularly perturbed Hopf bifurcation. IEEE Trans. Circuits Syst. 32, 1270–1280 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Adhiakri, S.: Rates of change of eigenvalues and eigenvectors in damped dynamic system. AIAA J. 39, 1452–1457 (1999)

    Google Scholar 

  4. Anderson, B.D.O., Bose, N.K., Jury, E.I.: A simple test for zeros of a complex polynomial in a sector. IEEE Trans. Autom. Control (Corresp.) AC–19, 437–438 (1974)

    MathSciNet  MATH  Google Scholar 

  5. Arrow, K.J., McManus, M.: A note on dynamical stability. Econometrica 26, 448–454 (1958)

    MathSciNet  MATH  Google Scholar 

  6. Bachelier, O., Henrion, D., Pradin, B., Mehdi, D.: Robust root-clustering of a matrix in intersections or unions of regions. SIAM J. Control Optim. 43, 1078–1093 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Barmish, B.R.: New Tools for Robustness of Linear Systems. Macmillan, New York (1994)

    MATH  Google Scholar 

  8. Bellman, R.: Introduction to Matrix Analysis, 2nd edn. McGraw Hill, New York (1970)

    MATH  Google Scholar 

  9. Bernstein, D.S.: Matrix Mathematics: Theory, Facts and Formulas. Princeton University Press, (2009)

  10. Burlakova, L.A.: On \(D\)-stability of Mechanical Systems (2009) www.scolargoogle.com

  11. Cain, B.: Real, \(3 \times 3\), \(D\)-stable matrices. J. Res. Natl. Bureau Stand. Sect. B 80B, 75–77 (1976)

    MathSciNet  MATH  Google Scholar 

  12. Carlson, D.: A class of positive stable matrices. J. Res. Natl. Bureau Stand. Sect. B 78B, 1–2 (1974)

    MathSciNet  MATH  Google Scholar 

  13. Chen, J., Fan, M., Yu, Ch-Ch.: On \(D\)-stability and structured singular values. Syst. Control Lett. 24, 19–24 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Chilali, M., Gahinet, P.: \(H_{\infty }\) design with pole placement constraints: an LMI approach. IEEE Trans. Autom. Control 41, 358–367 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Chilali, M., Gahinet, P., Apkarian, P.: Robust pole placement in LMI regions, In: Proceedings of the 36th Conference on Decision and Control San Diego, USA, pp. 1291–1296 (1997)

  16. Cross, G.W.: Three types of matrix stability. Linear Algebr. Appl. 20, 253–263 (1978)

    MathSciNet  MATH  Google Scholar 

  17. Davison, E.I., Ramesh, N.: A note on the eigenvalues of a real matrix. IEEE Trans. Autom. Control (Corresp.) AC–15, 252–253 (1970)

    MathSciNet  Google Scholar 

  18. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 12th edn. Prentice Hall, (2010)

  19. Dzhafarov, V., Büyükköroǧlu, T., Esen, Ö.: On different types of stability of linear polytopic systems. Proc. Steklov Inst. Math. 3, S66–S74 (2010)

    MathSciNet  Google Scholar 

  20. Ederer, M., Gilles, E.D., Sawodnya, O.: The Glansdorff-Prigogine stability criterion for biochemical reaction networks. Automatica 47, 1097–1104 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Fiedler, M.: Additive compound matrices and an inequality for eigenvalues of symmetric stochastic matrices. Czech. Math. J. 24, 392–402 (1974)

    MathSciNet  MATH  Google Scholar 

  22. Fuller, A.T.: Conditions for a matrix to have only characteristic roots with negative real parts. J. Matrix Anal. Appl. 23, 71–98 (1967)

    MathSciNet  MATH  Google Scholar 

  23. Gans, R.: Mechanical Systems: A Unified Approach to Vibrations and Controls. Springer, Berlin (2015)

    MATH  Google Scholar 

  24. Gantmacher, F.: Lectures in Analytical Mechanics. Mir Publishers, Moscow (1975)

    Google Scholar 

  25. Giorgi, G., Zuccotti, C.: An overview on \(D\)-stable matrices, Università di Pavia, Department of Economics and Management, DEM Working Paper Series 97, 1–28 (2015)

  26. Gutman, S., Jury, E.: A general theory for matrix root-clustering in subregions of the complex plane. IEEE Trans. Autom. Control AC–26, 853–863 (1981)

    MathSciNet  MATH  Google Scholar 

  27. Hershkowitz, D., Keller, N.: Positivity of principal minors, sign symmetry and stability. Linear Algebr. Appl. 364, 105–124 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Horn, R., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  29. Hostetter, G.H.: An improved test for the zeros of a polynomial in a sector. IEEE Trans. Autom. Control AC–20, 433 (1975)

    Google Scholar 

  30. Impram, S.T., Johnson, R., Pavani, R.: The \(D\)-stability problem for \(4 \times 4\) real matrices. Arch. Math. (BRNO) 41, 439–450 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Johnson, C.R.: A characterization of the nonlinearity of \(D\)-stability. J. Math. Econ. 2, 87–91 (1975)

    MathSciNet  MATH  Google Scholar 

  32. Johnson, C.R.: Some outstanding problems in the theory of matrices. Linear Multilinear Algebr. 12, 99–108 (1982)

    MathSciNet  MATH  Google Scholar 

  33. Johnson, C.R.: Sufficient conditions for \(D\)-stability. J. Econ. Theory 9, 53–62 (1974)

    MathSciNet  Google Scholar 

  34. Johnson, C.R.: Second, third and fourth order \(D\)-stability. J. Res. Natl. Bureau Stand. USA B78(1), 11–13 (1974)

    MathSciNet  MATH  Google Scholar 

  35. Johnson, R., Tesi, A.: On the \(D\)-stability problem for real matrices. Boll. dell’Unione Mat. Ital. 2–B, 299–314 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Jury, E.I.: Inners and stability of dynamic systems, Moscow, Science (1979) (transl. in Russian)

  37. Kaszkurewicz, E., Bhaya, A.: Matrix Diagonal Stability in Systems and Computation. Springer, Berlin (2000)

    MATH  Google Scholar 

  38. Kosov, A., Konovalova, Yu.: On \(D\)-stability and additive \(D\)-stability of mechanical systems, In: Proceedings of the 3rd International Conference “Infocommunicational and Computational Technologies and Systems (ICCTS - 2010)”, Ulan-Ude, Baikal lake, BSU, pp. 177-180 September 6-11 (2010)

  39. Kushel, O.: Geometric properties of LMI regions, arXiv:1910.10372 [math.SP] (2019)

  40. Kushel, O.: Unifying matrix stabiity concepts with a view to applications. SIAM Rev. 61(4), 643–729 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Li, M.Y., Wang, L.: A criterion for stability of matrices. J. Math. Anal. Appl. 225, 249–264 (1998)

    MathSciNet  MATH  Google Scholar 

  42. Ma, T.-W.: Classical Analysis on Normed Spaces. World Scientific Publishing, (1995)

  43. Matignon, D.: Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 2, 963–968 (1996)

    Google Scholar 

  44. Matignon, D.: Stability properties for generalized fractional differential systems. ESAIM Proc. Fract. Differ. Syst.: Models, Methods Appl. 5, 145–158 (1998)

    MathSciNet  MATH  Google Scholar 

  45. Moze, M., Sabatier, J.: LMI tools for stability analysis of fractional systems, In: Proceedings of ASME 2005 IDET / CIE conferences, Long-Beach, pp. 1–9, September 24–28 (2005)

  46. Pavani, R.: About characterization of \(D\)-stability by a computer algebra approach. AIP Conf. Proc. 1558, 309–312 (2013)

    Google Scholar 

  47. Pavani, R.: A new efficient approach to the characterization of \(D\)-stable matrices. Math. Methods Appl. Sci. 41, 1–10 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Pavani, R.: \(D\)-stability characterization problem can exhibit a polynomial computational complexity. AIP Conf. Proc. 2116, 050003-1,4 (2018)

    Google Scholar 

  49. Roskilly, T., Mikalsen, R.: Marine Systems Identification, Modeling, and Control. Butterworth-Heinemann, (2015)

  50. Sabatier, J., Moze, M., Farges, C.: LMI stability conditions for fractional order systems. Comput. Math. Appl. 59, 1594–1609 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Shao, K., Zhou, L., Qian, K., Yu, Y., Chen, F., Zheng, S.: Necessary and sufficient \(D\)-stability condition of fractional-order linear systems, In: Proceedings of the 36th Chinese Control Conference, pp. 44–48 (2017)

  52. Sontag, E.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  53. Stéphanos, C.: Sur une extension du calcul des substitutions linéaires. J. de Math. Pures et Appl. 6, 73–128 (1900)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Pavani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushel, O.Y., Pavani, R. The Problem of Generalized D-Stability in Unbounded LMI Regions and Its Computational Aspects. J Dyn Diff Equat 34, 651–669 (2022). https://doi.org/10.1007/s10884-020-09891-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09891-y

Keywords

Mathematics Subject Classification

Navigation