Skip to main content

Advertisement

Log in

The unknown human trophectoderm: implication for biopsy at the blastocyst stage

  • Commentary
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Trophectoderm biopsy is increasingly performed for pre-implantation genetic testing of aneuploidies and considered a safe procedure on short-term clinical outcome, without strong assessment of long-term consequences. Poor biological information on human trophectoderm is available due to ethical restrictions. Therefore, most studies have been conducted in vitro (choriocarcinoma cell lines, embryonic and pluripotent stem cells) and on murine models that nevertheless poorly reflect the human counterpart. Polarization, compaction, and blastomere differentiation (e.g., the basis to ascertain trophectoderm origin) are poorly known in humans. In addition, the trophectoderm function is poorly known from a biological point of view, although a panoply of questionable and controversial microarray studies suggest that important genes overexpressed in trophectoderm are involved in pluripotency, metabolism, cell cycle, endocrine function, and implantation. The intercellular communication system between the trophectoderm cells and the inner cell mass, modulated by cell junctions and filopodia in the murine model, is obscure in humans. For the purpose of this paper, data mainly on primary cells from human and murine embryos has been reviewed. This review suggests that the trophectoderm origin and functions have been insufficiently ascertained in humans so far. Therefore, trophectoderm biopsy should be considered an experimental procedure to be undertaken only under approved rigorous experimental protocols in academic contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

Not applicable

References

  1. Adjaye J, Huntriss J, Herwig R, BenKahla A, Brink TC, Wierling C, et al. Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells. 2005;23:1514–25.

    CAS  Google Scholar 

  2. Assou S, Boumela I, Haouzi D, Monzo C, Dechaud H, Kadoch IJ, et al. Transcriptome analysis during human trophectoderm specification suggests new roles of metabolic and epigenetic genes. PLoS One. 2012;7:e39306.

    CAS  Google Scholar 

  3. Bai Q, Assou S, Haouzi D, Ramirez JM, Monzo C, Becker F, et al. Dissecting the first transcriptional divergence during human embryonic development. Stem Cell Rev Rep. 2012;8:150–62.

    CAS  Google Scholar 

  4. Cauffman G, De Rycke M, Sermon K, et al. Markers that define stemness in ESC are unable to identify the totipotent cells in human preimplantation embryos. Hum Reprod. 2009;24:63–70.

    CAS  Google Scholar 

  5. Cauffman G, Van de Velde H, Liebaers I, et al. Oct-4 mRNA and protein expression during human preimplantation development. Mol Hum Reprod. 2005;11:173–81.

    CAS  Google Scholar 

  6. Niakan KK, Han J, Pedersen RA, Simon C, Pera RAR. Human pre-implantation embryo development. Development. 2012;139:829–41.

    CAS  Google Scholar 

  7. Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol. 2013;375:54–64.

    CAS  Google Scholar 

  8. Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature. 2017;550:67–73.

    CAS  Google Scholar 

  9. Rossant J, Tam PPL. New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell. 2017;20:18–28.

    CAS  Google Scholar 

  10. Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100:624–30.

    Google Scholar 

  11. Munné S, Kaplan B, Frattarelli JL, Child T, Nakhuda G, Shamma FN, et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil Steril. 2019;112:1071–9.

    Google Scholar 

  12. Pagliardini L, Viganò P, Alteri A, Corti L, Somigliana E, Papaleo E. Shooting STAR: reinterpreting the data from the ‘Single Embryo TrAnsfeR of Euploid Embryo’ randomized clinical trial. Reprod BioMed Online. 2020;40(4):475–8.

    CAS  Google Scholar 

  13. Dahdouh EM, Balayla J, García-Velasco JA. Impact of blastocyst biopsy and comprehensive chromosome screening technology on preimplantation genetic screening: a systematic review of randomized controlled trials. Reprod BioMed Online. 2015;30:281–9.

    Google Scholar 

  14. Gleicher N, Orvieto R. Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review. J Ovarian Res. 2017;10:21.

    Google Scholar 

  15. Humięcka M, Szpila M, Kłoś P, Maleszewski M, Szczepańska K. Mouse blastomeres acquire ability to divide asymmetrically before compaction. PLoS One. 2017;12:e0175032.

    Google Scholar 

  16. Ziomek CA, Johnson MH. Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell. 1980;21:935–42.

    CAS  Google Scholar 

  17. Fleming TP, Pickering SJ. Maturation and polarisation of the endocytotic system in outside blastomeres during mouse preimplantation development. J Embryol Exp Morphol. 1985;89:175–208.

    CAS  Google Scholar 

  18. Johnson MH, Maro B. A dissection of the mechanisms generating and stabilizing polarity in mouse 8- and 16-cell blastomeres: the role of cytoskeletal elements. J Embryol Exp Morphol. 1985;90:311–34.

    CAS  Google Scholar 

  19. Shirayoshi Y, Okada TS, Takeichi M. The calcium-dependent cell-cell adhesion system regulates inner cell mass formation and cell surface polarization in early mouse development. Cell. 1983;35:631–8.

    CAS  Google Scholar 

  20. Kimber SJ, Surani MA, Barton SC. Interactions of blastomeres suggest changes in cell surface adhesiveness during the formation of inner cell mass and trophectoderm in the preimplantation mouse embryo. J Embryol Exp Morphol. 1982;70:133–52.

    CAS  Google Scholar 

  21. Zhu M, Zernicka-Goetz M. Building an apical domain in the early mouse embryo: lessons, challenges and perspectives. Curr Opin Cell Biol. 2020;62:144–9.

    CAS  Google Scholar 

  22. Hirate Y, Hirahara S, Inoue K, Kiyonari H, Niwa H, Sasaki H. Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos. Develop Growth Differ. 2015;57:544–56.

    CAS  Google Scholar 

  23. Doe CQ. Cell polarity: the PARty expands. Nat Cell Biol. 2001;3:E7–9.

    CAS  Google Scholar 

  24. Pey R, Vial C, Schatten G, Hafner M. Increase in intracellular Ca2+ and relocation of E-cadherin during experimental decompaction of mouse embryos. Proc Natl Acad Sci U S A. 1998;95:12977–82.

    CAS  Google Scholar 

  25. Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem. 1996;61:514–23.

    CAS  Google Scholar 

  26. Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M, Cockburn K, et al. Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev Cell. 2014;30:410–22.

    CAS  Google Scholar 

  27. Watanabe Y, Miyasaka KY, Kubo A, Kida YS, Nakagawa O, Hirate Y, et al. Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm. Sci Rep. 2017;7:46135.

    CAS  Google Scholar 

  28. Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y. Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development. 2014;141:2813–24.

    CAS  Google Scholar 

  29. Leung CY, Zernicka-Goetz M. Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and –independent mechanisms. Nat Commun. 2013;4:2251.

    Google Scholar 

  30. Kameyama Y, Ohnishi H, Shimoi G, Hashizume R, Ito M, Smith LC. Asymmetrical allocation of mitochondrial DNA to blastomeres during the first two cleavages in mouse embryos. Reprod Fertil Dev. 2010;22:1247–53.

    CAS  Google Scholar 

  31. Antczak M, Van Blerkom J. Oocyte influences on early development: the regulatory proteins leptin and STAT3 are polarized in mouse and human oocytes and differentially distributed within the cells of the preimplantation stage embryo. Mol Hum Reprod. 1997;3:1067–86.

    CAS  Google Scholar 

  32. Tesarík J. Involvement of oocyte-coded message in cell differentiation control of early human embryos. Development. 1989;105:317–22.

    Google Scholar 

  33. Nikas G, Ao A, Winston RM, et al. Compaction and surface polarity in the human embryo in vitro. Biol Reprod. 1996;55:32–7.

    CAS  Google Scholar 

  34. Dale B, Tosti E, Iaccarino M. Is the plasma membrane of the human oocyte reorganised following fertilisation and early cleavage? Zygote. 1995;3:31–6.

    CAS  Google Scholar 

  35. Alikani M. Epithelial cadherin distribution in abnormal human pre-implantation embryos. Hum Reprod. 2005;20:3369–75.

    CAS  Google Scholar 

  36. Ghassemifar MR, Eckert JJ, Houghton FD, Picton HM, Leese HJ, Fleming TP. Gene expression regulating epithelial intercellular junction biogenesis during human blastocyst development in vitro. Mol Hum Reprod. 2003;9:245–52.

    CAS  Google Scholar 

  37. Eckert JJ, Houghton FD, Hawkhead JA, Balen AH, Leese HJ, Picton HM, et al. Human embryos developing in vitro are susceptible to impaired epithelial junction biogenesis correlating with abnormal metabolic activity. Hum Reprod. 2007;22:2214–24.

    CAS  Google Scholar 

  38. Campbell S, Swann HR, Seif MW, Kimber SJ, Aplin JD. Cell adhesion molecules on the oocyte and preimplantation human embryo. Hum Reprod. 1995;10:1571–8.

    CAS  Google Scholar 

  39. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell. 2009;16:398–410.

    CAS  Google Scholar 

  40. Qin H, Hejna M, Liu Y, Percharde M, Wossidlo M, Blouin L, et al. YAP induces human naive pluripotency. Cell Rep. 2016;14:2301–12.

    CAS  Google Scholar 

  41. Hildebrand S, Hultin S, Subramani A, Petropoulos S, Zhang Y, Cao X, et al. The E-cadherin/AmotL2 complex organizes actin filaments required for epithelial hexagonal packing and blastocyst hatching. Sci Rep. 2017;7:9540.

    Google Scholar 

  42. Van Blerkom J, Davis P, Alexander S. Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod. 2000;15(12):2621–33.

    Google Scholar 

  43. Antczak M, Van Blerkom J. Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Hum Reprod. 1999;14:429–47.

    CAS  Google Scholar 

  44. Fierro-González JC, White MD, Silva JC, Plachta N. Cadherin-dependent filopodia control preimplantation embryo compaction. Nat Cell Biol. 2013;15:1424–33.

    Google Scholar 

  45. Maître JL, Niwayama R, Turlier H, Nédélec F, Hiiragi T. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat Cell Biol. 2015;17:849–55.

    Google Scholar 

  46. Larue L, Ohsugi M, Hirchenhain J, Kemler R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A. 1994;91:8263–7.

    CAS  Google Scholar 

  47. Riethmacher D, Brinkmann V, Birchmeier C. A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci U S A. 1995;92:855–9.

    CAS  Google Scholar 

  48. Ebner T, Moser M, Shebl O, Sommergruber M, Gaiswinkler U, Tews G. Morphological analysis at compacting stage is a valuable prognostic tool for ICSI patients. Reprod BioMed Online. 2009;18:61–6.

    CAS  Google Scholar 

  49. Landry DW, Zucker HA, Sauer MV, Reznik M, Wiebe L. Hypocellularity and absence of compaction as criteria for embryonic death. Regen Med. 2006;1:367–71.

    Google Scholar 

  50. Ivec M, Kovacic B, Vlaisavljevic V. Prediction of human blastocyst development from morulas with delayed and/or incomplete compaction. Fertil Steril. 2011;96:1473–8.

    Google Scholar 

  51. Skiadas CC, Jackson KV, Racowsky C. Early compaction on day 3 may be associated with increased implantation potential. Fertil Steril. 2006;86:1386–91.

    Google Scholar 

  52. Le Cruguel S, Ferre-L’Hotellier V, Moriniere C, et al. Early compaction at day 3 may be a useful additional criterion for embryo transfer. J Assist Reprod Genet. 2013;30:683–90.

    Google Scholar 

  53. Iwata K, Mio Y. Observation of human embryonic behavior in vitro by high-resolution time-lapse cinematography. Reprod Med Biol. 2016;15:145–54.

    Google Scholar 

  54. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Hickman CFL. Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod BioMed Online. 2013;26:477–85.

    Google Scholar 

  55. Desai N, Abdelhafez F, Bedaiwy MA, et al. Clinical pregnancy and live births after transfer of embryos vitrified on day 3. Reprod BioMed Online. 2010;20:808–13.

    Google Scholar 

  56. Fernandez Gallardo E, Spiessens, D’Hooghe T, et al. Effect of day 3 embryo morphometrics and morphokinetics on survival and implantation after slow freezing-thawing and after vitrification-warming: a retrospective cohort study. Reprod Biol Endocrinol. 2017;15:79.

    Google Scholar 

  57. Berger DS, Abdelhafez F, Russell H, et al. Severe teratozoospermia and its influence on pronuclear morphology, embryonic cleavage and compaction. Reprod Biol Endocrinol. 2011;9:37.

    Google Scholar 

  58. Desai N, Gill P, Tadros NN, Goldberg JM, Sabanegh E, Falcone T. Azoospermia and embryo morphokinetics: testicular sperm-derived embryos exhibit delays in early cell cycle events and increased arrest prior to compaction. J Assist Reprod Genet. 2018;35:1339–48.

    Google Scholar 

  59. Van Langendonckt A, Demylle D, Wyns C, et al. Comparison of G1.2/G2.2 and Sydney IVF cleavage/blastocyst sequential media for the culture of human embryos: a prospective, randomized, comparative study. Fertil Steril. 2001;76:1023–31.

    Google Scholar 

  60. Paternot G, Spiessens M, Verstreken D, van Bauwel J, Debrock S, D’Hooghe T, et al. Is there a link between blastomere contact surfaces of day 3 embryos and live birth rate? Reprod Biol Endocrinol. 2012;10:78.

    Google Scholar 

  61. Ebner T, Balaban B, Moser M, Shebl O, Urman B, Ata B, et al. Automatic user-independent zona pellucida imaging at the oocyte stage allows for the prediction of preimplantation development. Fertil Steril. 2010;94:913–20.

    Google Scholar 

  62. Fawzy M, AbdelRahman MY, Zidan MH, et al. Humid versus dry incubator: a prospective, randomized, controlled trial. Fertil Steril. 2017;108:277–83.

    Google Scholar 

  63. Edwards RG, Purdy JM, Steptoe PC, Walters DE. The growth of human preimplantation embryos in vitro. Am J Obstet Gynecol. 1981;141:408–16.

    CAS  Google Scholar 

  64. Iwata K, Yumoto K, Sugishima M, Mizoguchi C, Kai Y, Iba Y, et al. Analysis of compaction initiation in human embryos by using time-lapse cinematography. J Assist Reprod Genet. 2014;31:421–6.

    Google Scholar 

  65. Van de Velde H, Cauffman G, Tournaye H, et al. The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod. 2008;23:1742–7.

    Google Scholar 

  66. Fléchon JE, Panigel M, Kraemer DC, et al. Surface ultrastructure of preimplantation baboon embryos. Anat Embryol (Berl). 1976;149:289–95.

    Google Scholar 

  67. Fleming TP, Sheth B, Fesenko I. Cell adhesion in the preimplantation mammalian embryo and its role in trophectoderm differentiation and blastocyst morphogenesis. Front Biosci. 2001;6:D1000–7.

    CAS  Google Scholar 

  68. Ducibella T, Albertini DF, Anderson E, Biggers JD. The preimplantation mammalian embryo: characterization of intercellular junctions and their appearance during development. Dev Biol. 1975;45:231–50.

    CAS  Google Scholar 

  69. Fleming TP, Javed Q, Collins J, Hay M. Biogenesis of structural intercellular junctions during cleavage in the mouse embryo. J Cell Sci Suppl. 1993;17:119–25.

    CAS  Google Scholar 

  70. Wang H, Ding T, Brown N, Yamamoto Y, Prince LS, Reese J, et al. Zonula occludens-1 (ZO-1) is involved in morula to blastocyst transformation in the mouse. Dev Biol. 2008;318:112–25.

    CAS  Google Scholar 

  71. Kim J, Gye MC, Kim MK. Role of occludin, a tight junction protein, in blastocoel formation, and in the paracellular permeability and differentiation of trophectoderm in preimplantation mouse embryos. Mol Cells. 2004;17:248–54.

    CAS  Google Scholar 

  72. Zenker J, White MD, Gasnier M, Alvarez YD, Lim HYG, Bissiere S, et al. Expanding actin rings zipper the mouse embryo for blastocyst formation. Cell. 2018;173:776–91.

    CAS  Google Scholar 

  73. Chan CJ, Costanzo M, Ruiz-Herrero T, Mönke G, Petrie RJ, Bergert M, et al. Hydraulic control of mammalian embryo size and cell fate. Nature. 2019;571:112–6.

    CAS  Google Scholar 

  74. Beyer EC, Paul DL, Goodenough DA. Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol. 1987;105:2621–9.

    CAS  Google Scholar 

  75. Kidder GM, Winterhager E. Intercellular communication in preimplantation development: the role of gap junctions. Front Biosci. 2001;6:D731–6.

    CAS  Google Scholar 

  76. De Sousa PA, Juneja SC, Caveney S, et al. Normal development of preimplantation mouse embryos deficient in gap junctional coupling. J Cell Sci. 1997;110:1751–8.

    Google Scholar 

  77. Lee S, Gilula NB, Warner AE. Gap junctional communication and compaction during preimplantation stages of mouse development. Cell. 1987;51:851–60.

    CAS  Google Scholar 

  78. Becker DL, Davies CS. Role of gap junctions in the development of the preimplantation mouse embryo. Microsc Res Tech. 1995;31:364–74.

    CAS  Google Scholar 

  79. Houghton FD. Role of gap junctions during early embryo development. Reproduction. 2005;129:129–35.

    CAS  Google Scholar 

  80. Gualtieri R, Santella L, Dale B. Tight junctions and cavitation in the human pre-embryo. Mol Reprod Dev. 1992;32:81–7.

    CAS  Google Scholar 

  81. Krivega M, Geens M, Van de Velde H. CAR expression in human embryos and hESC illustrates its role in pluripotency and tight junctions. Reproduction. 2014;148:531–44.

    CAS  Google Scholar 

  82. Dale B, Gualtieri R, Talevi R, Tosti E, Santella L, Elder K. Intercellular communication in the early human embryo. Mol Reprod Dev. 1991;29:22–8.

    CAS  Google Scholar 

  83. Hardy K, Warner A, Winston RM, et al. Expression of intercellular junctions during preimplantation development of the human embryo. Mol Hum Reprod. 1996;2:621–32.

    CAS  Google Scholar 

  84. Bloor DJ, Wilson Y, Kibschull M, Traub O, Leese HJ, Winterhager E, et al. Expression of connexins in human preimplantation embryos in vitro. Reprod Biol Endocrinol. 2004;2:25.

    Google Scholar 

  85. Holding C, Bolton V, Monk M. Detection of human novel developmental genes in cDNA derived from replicate individual preimplantation embryos. Mol Hum Reprod. 2000;6:801–9.

    CAS  Google Scholar 

  86. Pereda J, Coppo M. Ultrastructure of a two-cell human embryo. Anat Embryol (Berl). 1987;177:91–6.

    CAS  Google Scholar 

  87. Bentin-Ley U, Horn T, Sjogren A, et al. Ultrastructure of human blastocyst-endometrial interactions in vitro. J Reprod Fertil. 2000;120:337–50.

    CAS  Google Scholar 

  88. Sathananthan H, Menezes J, Gunasheela S. Mechanics of human blastocyst hatching in vitro. Reprod BioMed Online. 2003;7:228–34.

    Google Scholar 

  89. Bloor DJ, Metcalfe AD, Rutherford, et al. Expression of cell adhesion molecules during human preimplantation embryo development. Mol Hum Reprod. 2002;8:237–45.

    CAS  Google Scholar 

  90. Houghton FD, Hawkhead JA, Humpherson PG, et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod. 2002;17:999–1005.

    CAS  Google Scholar 

  91. Blakeley P, Fogarty NM, del Valle I, et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development. 2015;142:3151–65.

    CAS  Google Scholar 

  92. Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20:1131–9.

    CAS  Google Scholar 

  93. Hertig AT, Rock J, Adams EC. A description of 34 human ova within the first 17 days of development. Am J Anat. 1956;98:435–93.

    CAS  Google Scholar 

  94. Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, et al. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol. 2016;18:700–8.

    CAS  Google Scholar 

  95. Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH. Self-organization of the in vitro attached human embryo. Nature. 2016;533:251–4.

    CAS  Google Scholar 

  96. Morris SA. Human embryos cultured in vitro to 14 days. Open Biol. 2017;7:170003.

    Google Scholar 

  97. Cauffman G, Liebaers I, Van Steirteghem A, et al. POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells. 2006;24:2685–91.

    CAS  Google Scholar 

  98. Hansis C, Tang YX, Grifo JA, Krey LC. Analysis of Oct-4 expression and ploidy in individual human blastomeres. Mol Hum Reprod. 2001;7:155–61.

    CAS  Google Scholar 

  99. Hansis C, Grifo JA, Krey LC. Oct-4 expression in inner cell mass and trophectoderm of human blastocysts. Mol Hum Reprod. 2000;6:999–1004.

    CAS  Google Scholar 

  100. De Paepe C, Cauffman G, Verloes A, et al. Human trophectoderm cells are not yet committed. Hum Reprod. 2013;28:740–9.

    Google Scholar 

  101. Mitalipov SM, Kuo HC, Hennebold JD, Wolf DP. Oct-4 expression in pluripotent cells of the rhesus monkey. Biol Reprod. 2003;69:1785–92.

    CAS  Google Scholar 

  102. Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Schöler H, Niemann H. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod. 2000;63:1698–705.

    CAS  Google Scholar 

  103. Szczepańska K, Stańczuk L, Maleszewski M. Oct4 protein remains in trophectoderm until late stages of mouse blastocyst development. Reprod Biol. 2011;11:145–56.

    Google Scholar 

  104. Harvey AJ, Armant DR, Bavister BD, Nichols SM, Brenner CA. Inner cell mass localization of NANOG precedes OCT3/4 in rhesus monkey blastocysts. Stem Cells Dev. 2009;18:1451–8.

    CAS  Google Scholar 

  105. Hambiliki F, Ström S, Zhang P, Stavreus-Evers A. Co-localization of NANOG and OCT4 in human pre-implantation embryos and in human embryonic stem cells. J Assist Reprod Genet. 2012;29:1021–8.

    Google Scholar 

  106. Toyooka Y, Oka S, Fujimori T. Early preimplantation cells expressing Cdx2 exhibit plasticity of specification to TE and ICM lineages through positional changes. Dev Biol. 2016;411:50–60.

    CAS  Google Scholar 

  107. Krivega MV, Geens M, Heindryckx B, Santos-Ribeiro S, Tournaye H, van de Velde H. Cyclin E1 plays a key role in balancing between totipotency and differentiation in human embryonic cells. Mol Hum Reprod. 2015;21:942–56.

    CAS  Google Scholar 

  108. Sritanaudomchai H, Sparman M, Tachibana M, Clepper L, Woodward J, Gokhale S, et al. CDX2 in the formation of the trophectoderm lineage in primate embryos. Dev Biol. 2009;335:179–87.

    CAS  Google Scholar 

  109. Kunath T, Yamanaka Y, Detmar J, MacPhee D, Caniggia I, Rossant J, et al. Developmental differences in the expression of FGF receptors between human and mouse embryos. Placenta. 2014;35:1079–88.

    CAS  Google Scholar 

  110. Bridges PJ, Jeoung M, Kim H, Kim JH, Lee DR, Ko CM, et al. Methodology matters: IVF versus ICSI and embryonic gene expression. Reprod BioMed Online. 2011;23:234–44.

    Google Scholar 

  111. Kohda T. Effects of embryonic manipulation and epigenetics. J Hum Genet. 2013;58:416–20.

    CAS  Google Scholar 

  112. Aghajanova L, Shen S, Rojas AM, Fisher SJ, Irwin JC, Giudice LC. Comparative transcriptome analysis of human trophectoderm and embryonic stem cell-derived trophoblasts reveal key participants in early implantation. Biol Reprod. 2012;86:1–21.

    Google Scholar 

  113. Jones GM, Cram DS, Song B, Kokkali G, Pantos K, Trounson AO. Novel strategy with potential to identify developmentally competent IVF blastocysts. Hum Reprod. 2008;23:1748–59.

    Google Scholar 

  114. Ntostis P, Kokkali G, Iles D, Huntriss J, Tzetis M, Picton H, et al. Can trophectoderm RNA analysis predict human blastocyst competency? Syst Biol Reprod Med. 2019;65:312–25.

    CAS  Google Scholar 

  115. Kirkegaard K, Villesen P, Jensen JM, Hindkjær JJ, Kølvraa S, Ingerslev HJ, et al. Distinct differences in global gene expression profiles in non-implanted blastocysts and blastocysts resulting in live birth. Gene. 2015;571:212–20.

    CAS  Google Scholar 

  116. Martins WP, Nastri CO, Rienzi L, van der Poel SZ, Gracia C, Racowsky C. Blastocyst vs cleavage-stage embryo transfer: systematic review and meta-analysis of reproductive outcomes. Ultrasound Obstet Gynecol. 2017;49:583–91.

    CAS  Google Scholar 

  117. Lonergan P, Fair T, Corcoran D, Evans ACO. Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology. 2006;65:137–52.

    CAS  Google Scholar 

  118. Kleijkers SH, Eijssen LM, Coonen E, et al. Differences in gene expression profiles between human preimplantation embryos cultured in two different IVF culture media. Hum Reprod. 2015;30:2303–11.

    CAS  Google Scholar 

  119. McEwen KR, Leitch HG, Amouroux R, et al. The impact of culture on epigenetic properties of pluripotent stem cells and pre-implantation embryos. Biochem Soc Trans. 2013;41:711–9.

    CAS  Google Scholar 

  120. Tachataki M, Winston RML, Taylor DM. Quantitative RT-PCR reveals tuberous sclerosis gene, TSC2, mRNA degradation following cryopreservation in the human preimplantation embryo. Mol Hum Reprod. 2003;9:593–601.

    CAS  Google Scholar 

  121. Shaw L, Sneddon SF, Brison DR, Kimber SJ. Comparison of gene expression in fresh and frozen-thawed human preimplantation embryos. Reproduction. 2012;144:569–82.

    CAS  Google Scholar 

  122. Houghton FD. Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation. 2006;74:11–8.

    CAS  Google Scholar 

  123. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science. 2004;303:1007–10.

    CAS  Google Scholar 

  124. Salas-Vidal E, Lomelí H. Imaging filopodia dynamics in the mouse blastocyst. Dev Biol. 2004;265:75–89.

    CAS  Google Scholar 

  125. Chai N, Patel Y, Jacobson K, McMahon J, McMahon A, Rappolee DA. FGF is an essential regulator of the fifth cell division in preimplantation mouse embryos. Dev Biol. 1998;198:105–15.

    CAS  Google Scholar 

  126. Copp AJ. Interaction between inner cell mass and trophectoderm of the mouse blastocyst. I. A study of cellular proliferation. J Embryol Exp Morphol. 1978;48:109–25.

    CAS  Google Scholar 

  127. Copp AJ. Interaction between inner cell mass and trophectoderm of the mouse blastocyst. II. The fate of the polar trophectoderm. J Embryol Exp Morphol. 1979;51:109–20.

    CAS  Google Scholar 

  128. Cruz YP, Pedersen RA. Cell fate in the polar trophectoderm of mouse blastocysts as studied by microinjection of cell lineage tracers. Dev Biol. 1985;112:73–83.

    CAS  Google Scholar 

  129. Fleming TP, Warren PD, Chisholm JC, et al. Trophectodermal processes regulate the expression of totipotency within the inner cell mass of the mouse expanding blastocyst. J Embryol Exp Morphol. 1984;84:63–90.

    CAS  Google Scholar 

  130. Rowson LEA, Moor R. Development of sheep conceptus during the first fourteen days. J Anat. 1966;100:777–85.

    CAS  Google Scholar 

  131. Carson SA, Gentry WL, Smith AL, Buster JE. Trophectoderm microbiopsy in murine blastocysts: comparison of four methods. J Assist Reprod Genet. 1993;10:427–33.

    CAS  Google Scholar 

  132. Burwinkel TH, Kim HN, Buster JE, Minhas BS, Carson SA. Embryo survival after pronuclear microinjection and trophectoderm biopsy. Am J Obstet Gynecol. 1994;170:1199–203.

    CAS  Google Scholar 

  133. Sheardown SA, Findlay I, Turner A, Greaves D, Bolton VN, Mitchell M, et al. Preimplantation diagnosis of a human beta-globin transgene in biopsied trophectoderm cells and blastomeres of the mouse embryo. Hum Reprod. 1992;7:1297–303.

    CAS  Google Scholar 

  134. Muggleton-Harris AL, Glazier AM, Pickering SJ. Biopsy of the human blastocyst and polymerase chain reaction (PCR) amplification of the beta-globin gene and a dinucleotide repeat motif from 2-6 trophectoderm cells. Hum Reprod. 1993;8:2197–205.

    CAS  Google Scholar 

  135. McArthur SJ, Leigh D, Marshall JT, et al. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts. Fertil Steril. 2005;84:1628–36.

    Google Scholar 

  136. Muggleton-Harris AL, Findlay I. In-vitro studies on ‘spare’ human preimplantation embryos in culture. Hum Reprod. 1991;6:85–92.

    CAS  Google Scholar 

  137. Dokras A, Sargent IL, Ross C, Gardner RL, Barlow DH. Trophectoderm biopsy in human blastocysts. Hum Reprod. 1990;5:821–5.

    CAS  Google Scholar 

  138. Cimadomo D, Capalbo A, Levi-Setti PE, Soscia D, Orlando G, Albani E, et al. Associations of blastocyst features, trophectoderm biopsy and other laboratory practice with post-warming behavior and implantation. Hum Reprod. 2018;33:1992–2001.

    Google Scholar 

  139. Fong CY, Bongso A, Sathananthan H, Ho J, Ng SC. Ultrastructural observations of enzymatically treated human blastocysts: zona-free blastocyst transfer and rescue of blastocysts with hatching difficulties. Hum Reprod. 2001;16:540–6.

    CAS  Google Scholar 

  140. Monk M, Muggleton-Harris AL, Rawlings E, Whittingham DG. Pre-implantation diagnosis of HPRT-deficient male and carrier female mouse embryos by trophectoderm biopsy. Hum Reprod. 1988;3:377–81.

    CAS  Google Scholar 

  141. Gardner RL, Edwards RG. Control of the sex ratio at fullterm in the rabbit by transferring sexed blastocysts. Nature. 1968;218:346–9.

    CAS  Google Scholar 

  142. Nijs M, Van Steirteghem A. Developmental potential of biopsied mouse blastocysts. J Exp Zool. 1990;256:232–6.

    CAS  Google Scholar 

  143. Gentry WL, Critser ES. Growth of mouse pups derived from biopsied blastocysts. Obstet Gynecol. 1995;85:1003–6.

    CAS  Google Scholar 

  144. Dokras A, Sargent IL, Gardner RL, Barlow DH. Human trophectoderm biopsy and secretion of chorionic gonadotrophin. Hum Reprod. 1991;6:1453–9.

    CAS  Google Scholar 

  145. Summers PM, Campbell JM, Miller MW. Normal in-vivo development of marmoset monkey embryos after trophectoderm biopsy. Hum Reprod. 1988;3:389–93.

    CAS  Google Scholar 

  146. Zhang S, Luo K, Cheng D, Tan Y, Lu C, He H, et al. Number of biopsied trophectoderm cells is likely to affect the implantation potential of blastocysts with poor trophectoderm quality. Fertil Steril. 2016;105:1222–7.

    Google Scholar 

  147. Molbay M, Kipmen-Korgun D, Korkmaz G, Ozekinci M, Turkay Korgun E. Human trophoblast progenitor cells express and release angiogenic factors. Int J Mol Cell Med. 2018;7:203–11.

    CAS  Google Scholar 

  148. Neal SA, Franasiak JM, Forman EJ, Werner MD, Morin SJ, Tao X, et al. High relative deoxyribonucleic acid content of trophectoderm biopsy adversely affects pregnancy outcomes. Fertil Steril. 2017;107:731–6.

    CAS  Google Scholar 

  149. Gleicher N, Metzger J, Croft G, Kushnir VA, Albertini DF, Barad DH. A single trophectoderm biopsy at blastocyst stage is mathematically unable to determine embryo ploidy accurately enough for clinical use. Reprod Biol Endocrinol. 2017;15:33.

    Google Scholar 

  150. Berger JJ. Primum non nocere: are we closer to saying that the trophectoderm biopsy does no harm? Fertil Steril. 2019;112:35–6.

    Google Scholar 

  151. Vera-Rodriguez M, Diez-Juan A, Jimenez-Almazan J, Martinez S, Navarro R, Peinado V, et al. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum Reprod. 2018;33:745–56.

    CAS  Google Scholar 

  152. Huang L, Bogale B, Tang Y, Lu S, Xie XS, Racowsky C. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc Natl Acad Sci U S A. 2019;116:14105–12.

    CAS  Google Scholar 

Download references

Code availability

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Tocci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tocci, A. The unknown human trophectoderm: implication for biopsy at the blastocyst stage. J Assist Reprod Genet 37, 2699–2711 (2020). https://doi.org/10.1007/s10815-020-01925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01925-0

Keywords

Navigation