Skip to main content
Log in

Chlorination roasting-coupled water leaching process for potash recovery from waste mica scrap using dry marble sludge powder and sodium chloride

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The present paper reports the effective utilization of marble sludge powder (MSP) for the recovery of potash values from waste mica scrap using chlorination roasting-water leaching method. Characterization studies indicated the presence of dolomite as the major mineral phase in MSP, whereas muscovite and quartz were observed in the mica sample. The acid leaching studies suggest a maximum of 22% potash recovery under conditions: 4 M H2SO4 acid, particle size of ∼100 µm, stirring speed of 600 r/min, leaching temperature of 75°C, and leaching time of 90 min. The chlorination roasting-water leaching process was adopted to achieve the lowest level of 80%–90% potash recovery. The optimum conditions for the recovery of ∼93% potash from mica (∼8.6wt% K2O) requires 900°C roasting temperature, 30 min roasting time, and 1:1:0.75 mass ratio of mica: MSP: NaCl. The roasting temperature and amount of NaCl are found to be the most important factors for the recovery process. The reaction mechanism suggests the formation of different mineral phases, including sylvite (KCl), wollastonite, kyanite, and enstatite, during roasting, which were confirmed by X-ray diffraction (XRD) analyses and scanning electron microscopy (SEM) morphologies. The MSP-blended NaCl additive is more effective for potash recovery compared with the other reported commercial roasting additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.A. El-Sayed, A.B. Farag, A.M. Kandeel, A.A. Younes, and M.M. Yousef, Characteristics of the marble processing powder waste at Shaq El-Thoaban industrial area, Egypt, and its suitability for cement manufacture, HBRC J., 14(2018), No. 2, p. 171.

    Google Scholar 

  2. R.S. Kori, P. Jagan, and S.K. Meena, Guidlines for Management and Handling of Marble Slurry Generated from Marble Processing Plants in Rajasthan, Central Pollution Control Board, Bhopal [2019-07-09]. https://www.ccbbd.oom/ocuument/410211989/Draft-guidelines-for-M-H-of-Marble-slurry-generated-from-marble-processing-plants-in-Rajasthan-pdf

  3. K. Shreyas, Impact of marble dust on cement concrete, Int. J. Sci. Technol. Eng., 4(2017), No. 6, p. 6.

    Google Scholar 

  4. M. Wijayasundara, P. Mendis, and R.H. Crawford, Net incremental indirect external benefit of manufacturing recycled aggregate concrete, Waste Manage., 78(2018), p. 279.

    Google Scholar 

  5. The Countries with the Largest Marble Exports in 2017 [2018-12-31]. https://otonenewe.ec/countries-lgegtst-mbreie-exports-2017/

  6. Indian Bureau of Mines, Indian Minerals Yearbook 2015 (Part-III: Mineral Reviews), 54th ed., Government of India, Ministry of Mines, Indian Bureau of Mines [2016-11-20]. http://ibm.nic.in/writereaddata/files/11232016170046IMYB2015_Marble_23112016_Adv.pdf

  7. M. Yavuz Çelik and E. Sabah, Geological and technical characterization of Iscehisar (Afyon-Turkey) marble deposits and the impact of marble waste on environmental pollution, J. Environ. Manage., 87(2008), No. 1, p. 106.

    Google Scholar 

  8. A. Pappu, M. Saxena, and S.R. Asolekar, Solid wastes generation in India and their recycling potential in building materials, Build. Environ., 42(2007), No. 6, p. 2311.

    Google Scholar 

  9. M.A. Montero, M.M. Jordan, M.S. Hernández-Crespo, and T. Sanfeliu, The use of sewage sludge and marble residues in the manufacture of ceramic tile bodies, Appl. Clay Sci., 46(2009), No. 4, p. 404.

    CAS  Google Scholar 

  10. E.K. Shirazi, Reusing of stone waste in various industrial activities, [in] 2011 2nd International Conference on Environmental Science and Development, Singapore, 2011, p. 217.

  11. G. Rego, C. Martínez, A. Quero, T.P. Blanco, and J.M.F. Borque, Efectos del polvo inhalado en los trabajadores de la industria de pizarras, Med. Clínica, 116(2001), No. 8, p. 290.

    CAS  Google Scholar 

  12. G. Angotzi, L. Bramanti, D. Tavarini, M. Gragnani, L. Cassiodoro, L. Moriconi, P. Saccardi, I. Pinto, N. Stacchini, and M. Bovenzi, World at work: Marble quarrying in Tuscany, Occup. Environ. Med., 62(2005), No. 6, p. 417.

    CAS  Google Scholar 

  13. M. El-Gammal, M.S. Ibrahim, E.A. Badr, S.A. Asker, and M. El-Galad, Health risk assessment of marble dust at marble workshops, Nat. Sci., 9(2011), No. 11, p. 144.

    Google Scholar 

  14. MSME-Development Institute, Status Report on Commercial Utilization of Marble Slurry in Rajasthan, Government of India, Ministry of Micro, Small & Medium Enterprises, Jaipur [2019-07-07]. https://www.pdffiller.com/jsfiller-desk12/?projectId=492304325#df10e63ea090407894eb1d43d40fb651

  15. N. Careddu, G. Siotto, R. Siotto, and C. Tilocca, From landfill to water, land and life: The creation of the centre for stone materials aimed at secondary processing, Resour. Policy, 38(2013), No. 3, p. 258.

    Google Scholar 

  16. F.J. Aukour, Incorporation of marble sludge in industrial building eco-blocks or cement bricks formulation, Jordan J. Civ. Eng., 3(2009), No. 1, p. 58.

    Google Scholar 

  17. S.D. Kore and A.K. Vyas, Impact of marble waste as coarse aggregate on properties of lean cement concrete, Case Stud. Constr. Mater., 4(2016), p. 85.

    Google Scholar 

  18. F. Faleschini, M.A. Zanini, C. Pellegrino, and S. Pasinato, Sustainable management and supply of natural and recycled aggregates in a medium-size integrated plant, Waste Manage., 49(2016), p. 146.

    Google Scholar 

  19. E. Tugrul Tunc, Recycling of marble waste: A review based on strength of concrete containing marble waste, J. Environ. Manage., 231(2019), p. 86.

    Google Scholar 

  20. A. Rana, P. Kalla, and L.J. Csetenyi, Sustainable use of marble slurry in concrete, J. Cleaner Prod., 94(2015), p. 304.

    CAS  Google Scholar 

  21. R. Rodrigues, J. de Brito, and M. Sardinha, Mechanical properties of structural concrete containing very fine aggregates from marble cutting sludge, Constr. Build. Mater., 77(2015), p. 349.

    Google Scholar 

  22. M. Singh, A. Srivastava, and D. Bhunia, An investigation on effect of partial replacement of cement by waste marble slurry, Constr. Build. Mater., 134(2017), p. 471.

    CAS  Google Scholar 

  23. K. Vardhan, R. Siddique, and S. Goyal, Strength, permeation and micro-structural characteristics of concrete incorporating waste marble, Constr. Build. Mater., 203(2019), p. 45.

    Google Scholar 

  24. H. Al-Hamaiedh, Reuse of marble sludge slime in ceramic industry, Jordan J. Civ. Eng., 4(2010), No. 3, p. 264.

    Google Scholar 

  25. J. Carneiro, D.M. Tobaldi, M.N. Capela, R.M. Novais, M.P. Seabra, and J.A. Labrincha, Synthesis of ceramic pigments from industrial wastes: Red mud and electroplating sludge, Waste Manage., 80(2018), p. 371.

    CAS  Google Scholar 

  26. S.K. Amin, E.M. Abdel Hamid, S.A. El-Sherbiny, H.A. Sibak, and M.F. Abadir, The use of sewage sludge in the production of ceramic floor tiles, HBRC J., 14(2018), No. 3, p. 309.

    Google Scholar 

  27. G. Tozsin, Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 1.

    CAS  Google Scholar 

  28. S. Elabbas, L. Mandi, F. Berrekhis, M.N. Pons, J.P. Leclerc, and N. Ouazzani, Removal of Cr(III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: Eggshell and powdered marble, J. Environ. Manage., 166(2016), p. 589.

    CAS  Google Scholar 

  29. S.E. Ghazy and A.H.M. Gad, Lead separation by sorption onto powdered marble waste, Arabian J. Chem., 7(2014), No. 3, p. 277.

    CAS  Google Scholar 

  30. M.R. Lasheen, A.M. Ashmawy, H.S. Ibrahim, and S.M. Abdel Moniem, Immobilization technologies for the management of hazardous industrial waste using granite waste (case study), Korean J. Chem. Eng., 33(2016), p. 914.

    CAS  Google Scholar 

  31. N. Bilgin, H.A. Yeprem, S. Arslan, A. Bilgin, E. Günay, and M. Marşoglu, Use of waste marble powder in brick industry, Constr. Build. Mater., 29(2012), p. 449.

    Google Scholar 

  32. G. Tozsin, A.I. Arol, T. Oztas, and E. Kalkan, Using marble wastes as a soil amendment for acidic soil neutralization, J. Environ. Manage., 133(2014), p. 374.

    CAS  Google Scholar 

  33. M. Dasgupta, S.D. Gupta, R. Mukhopadhyay, and A. Bandyopadhyay, Derivation of a new compounding ingredient for rubber from waste marble powder and study on its suitability in an inner liner compound of tubeless tyres, Prog. Rubber Plast. Recycl. Technol., 32(2016), No. 2, p. 55.

    Google Scholar 

  34. G. Marras and N. Careddu, Sustainable reuse of marble sludge in tyre mixtures, Resour. Policy, 59(2018), p. 77.

    Google Scholar 

  35. T. Thenepalli, A.Y. Jun, C. Han, C. Ramakrishna, and J.W. Ahn, A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers, Korean J. Chem. Eng., 32(2015), No. 6, p. 1009.

    CAS  Google Scholar 

  36. T. Chaize, Potash [2010-03-14]. http://www.dani2989.com/gold/potashgb.htm

  37. B. Mukherjee, Uses of Potassium [2019-07-05]. https://biologywise.com/potassium-uses

  38. D.A.C. Manning, Mineral sources of potassium for plant nutrition. A review, Agron. Sustainable Dev., 30(2010), p. 281.

    CAS  Google Scholar 

  39. P. Heffer and M. Prud’homme, Short-term fertilizer outlook 2015–2016, [in] International Fertilizer Industry Association Strategic Forum, Paris, 2015.

  40. S.M. Jasinski, Mica, [in] Mineral Commodity Summaries 2018, U.S. Geological Survey (USGS), p. 108 [2019-07-10]. https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/mcs/mcs2018.pdf

  41. Indian Bureau of Mines, Mineral reviews, [in] Indian Minerals Yearbook 2018, Vol. III [2019-06-22]. https://ibm.gov.in/index.php?c=pages&mindex&id1347

  42. W.X. Liu, X.S. Xu, X.H. Wu, Q.Y. Yang, Y.M. Luo, and P. Christie, Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture, Environ. Geochem. Health, 28(2006), p. 133.

    Google Scholar 

  43. Z. Luo, J. Yang, H.W. Ma, M.T. Liu, and X. Ma, Recovery of magnesium and potassium from biotite by sulfuric acid leaching and alkali precipitation with ammonia, Hydrometallurgy, 157(2015), p. 188.

    CAS  Google Scholar 

  44. T.M. Bhatti, J.M. Bigham, A. Vuorinen, and O.H. Tuovinen, Weathering of phlogopite in simulated bioleaching solutions, Int. J. Miner. Process., 98(2011), No. 1–2, p. 30.

    CAS  Google Scholar 

  45. C. Varadachari, An investigation on the reaction of phosphoric acid with mica at elevated temperatures, Ind. Eng. Chem. Res., 31(1992), No. 1, p. 357.

    CAS  Google Scholar 

  46. N.N. Xue, Y.M. Zhang, T. Liu, J. Huang and Q.S. Zhang, Effects of hydration and hardening of calcium sulfate on muscovite dissolution during pressure acid leaching of black shale, J. Cleaner Prod., 149(2017), p. 989.

    CAS  Google Scholar 

  47. C. Varadachari, Potash fertilizer from biotite, Ind. Eng. Chem. Res., 36(1997), No. 11, p. 4768.

    CAS  Google Scholar 

  48. P. Meng, Z.L. Huang, Z.Q. Li, M.W. Hu, C.L. Chen, and R. Chi, Conditions and mechanism for extracting potassium from muscovite in potassium-bearing shale by the barium ion-exchange method, Int. J. Miner. Process., 142(2015), p. 107.

    Google Scholar 

  49. A. Kumar, Y.P. Singh, G. Pradhan, and N. Dhawan, Utilization of mica for potassium recovery, Mater. Today: Proc., 5(2018), No. 9, p. 17030.

    CAS  Google Scholar 

  50. A.A.S. da Silva, J.A. Sampaio, A.B. da Luz, S.C.A. França, and C.M. Ronconi, Modeling controlled potassium release from phlogopite in solution: Exploring the viability of using crushed phlogopitite rock as an alternative potassium source in Brazilian soil, J. Braz. Chem. Soc., 24(2013), No. 8, p. 1366.

    CAS  Google Scholar 

  51. S.K. Jena, N. Dhawan, D.S. Rao, P.K. Misra, B.K. Mishra, and B. Das, Studies on extraction of potassium values from nepheline syenite, Int. J. Miner. Process., 133(2014), p. 13.

    CAS  Google Scholar 

  52. S.K. Jena, N. Dash, and S.S. Rath, Effective utilization of lime mud for the recovery of potash from mica scraps, J. Cleaner Prod., 231(2019), p. 64.

    CAS  Google Scholar 

  53. S. Shekhar, D. Mishra, A. Agarwal, and K.K. Sahu, Physico-chemical treatment of glauconitic sandstone to recover potash and magnetite, J. Cleaner Prod., 147(2017), p. 681.

    CAS  Google Scholar 

  54. S.K. Jena, P.K. Misra, and B. Das, Studies on extraction of potassium from feldspar by roast-leach method using phosphogypsum and sodium chloride, Miner. Process. Extr. Metall. Rev., 37(2016), No. 5, p. 323.

    CAS  Google Scholar 

  55. M.T. Serdengeçti, H. Baştürkcü, F. Burat, and M.O. Kangal, The correlation of roasting conditions in selective potassium extraction from K-feldspar ore, Minerals, 9(2019), No. 2, p. 109.

    Google Scholar 

  56. B. Yuan, C. Li, B. Liang, L. Lü, H.R. Yue, H.Y. Sheng, L.P. Ye, and H.P. Xie, Extraction of potassium from K-feldspar via the CaCl2 calcination route, Chin. J. Chem. Eng., 23(2015), No. 9, p. 1557.

    CAS  Google Scholar 

  57. S.K. Jena, N. Dash, A.K. Samal, and P.K. Misra, Competency of chlorination roasting coupled water leaching process for potash recovery from K-feldspar: Mechanism and kinetics aspects, Korean J. Chem. Eng., 36(2019), No. 12, p. 2060.

    CAS  Google Scholar 

  58. S.K. Jena, N. Dhawan, S.S. Rath, D.S. Rao, and B. Das, Investigation of microwave roasting for potash extraction from nepheline syenite, Sep. Purif. Technol., 161(2016), p. 104.

    CAS  Google Scholar 

  59. A.K. Mazumder, T. Sharma, and T.C. Rao, Extraction of potassium from glauconitic sandstone by the roast-leach method, Int. J. Miner. Process., 38(1993), No. 1–2, p. 111.

    CAS  Google Scholar 

  60. L.S. Darken and R.W. Gurry, Physical Chemistry of Metals, CBS Publishers and Distributers, Delhi, 1987.

    Google Scholar 

  61. L. Li, S.M. Lei, Y.Y. Liu, and H.H. Luo, Extraction and reaction mechanism of potassium from associated phosphorus and potassium ore, J. Wuhan Univ. Technol. -Mater. Sci. Ed., 31(2016), p. 6.

    CAS  Google Scholar 

  62. M. Kumanan, G. Sathya, V. Nandakumar, and L.J. Berchmans, Extraction of potash from k-feldspar mineral by acid and molten salt leaching processes, IASET Int. J. Metall. Mater. Chem. Eng., 7(2016), p. 1.

    Google Scholar 

  63. W.O. Santos, E.M. Mattiello, A.A. Pacheco, L. Vergutz, L.F. da Silva Souza-Filho, and D.B. Abdala, Thermal treatment of a potassium-rich metamorphic rock in formation of soluble K forms, Int. J. Miner. Process., 159(2017), p. 16.

    CAS  Google Scholar 

  64. E.M.M. Ewais, Y.M.Z. Ahmed, A.A.M. El-Amir, and H. El-Didamony, Cement kiln dust/rice husk ash as a low temperature route for wollastonite processing, J. Silic. Based Compos. Mater., 66(2014), No. 3, p. 69.

    Google Scholar 

  65. M. Lin, Z.Y. Pei, and S.M. Lei, Mineralogy and processing of hydrothermal vein quartz from Hengche, Hubei Province (China), Minerals, 7(2017), No. 9, p. 161.

    Google Scholar 

  66. Z.Y. Pei, M. Lin, Y.Y. Liu, and S.M. Lei, Dissolution behaviors of trace muscovite during pressure leaching of hydrothermal vein quartz using H2SO4 and NH4Cl as leaching agents, Minerals, 8(2018), No. 2, p. 60.

    Google Scholar 

  67. O. Palchik, J.J. Zhu, and A. Gedanken, Microwave assisted preparation of binary oxide nanoparticles, J. Mater. Chem., 10(2000), No. 5, p. 1251.

    CAS  Google Scholar 

  68. M. Olszak-Humienik and M. Jablonski, Thermal behavior of natural dolomite, J. Therm. Anal. Calorim., 119(2015), No. 3, p. 2239.

    CAS  Google Scholar 

  69. T.N. Chernykh, A.V. Nosov, and L.Y. Kramar, Dolomite magnesium oxychloride cement properties control method during its production, IOP Conf. Ser: Mater. Sci. Eng., 71(2015), art. No. 012045.

  70. H.W. Day, The high temperature stability of muscovite plus quartz, Am. Mineral., 58(1973), p. 255.

    CAS  Google Scholar 

  71. J.A. Schramke, D.M. Kerrick, and A.C. Lasaga, The reaction muscovite + quartz = andalusite + K-feldspar + quartz. Part I. Growth kinetics and mechanism, Am. J. Sci., 287(1987), No. 6, p. 517.

    CAS  Google Scholar 

  72. L. Shi and H.J. Luo, Preparation of soil nutrient amendment using white mud produced in ammonia-soda process and its environmental assessment, Trans. Nonferrous Met. Soc., 19(2009), No. 5, p. 1383.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director of CSIR-IMMT, Bhubaneswar, India, for his kind permission to publish this paper. The authors also wish to gratefully acknowledge Mr. Sapan K. Kandi and Mr. Debadatta Sahoo for useful discussions during the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar Jena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, S.K., Sahu, J., Padhy, G. et al. Chlorination roasting-coupled water leaching process for potash recovery from waste mica scrap using dry marble sludge powder and sodium chloride. Int J Miner Metall Mater 27, 1203–1215 (2020). https://doi.org/10.1007/s12613-020-1994-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1994-3

Keywords

Navigation