Skip to main content
Log in

Research progress on the characterization and repair of graphene defects

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Graphene has excellent theoretical properties and a wide range of applications in metal-based composites. However, because of defects on the graphene surface, the actual performance of the material is far below theoretical expectations. In addition, graphene containing defects could easily react with a matrix alloy, such as Al, to generate brittle and hydrolyzed phases that could further reduce the performance of the resulting composite. Therefore, defect repair is an important area of graphene research. The repair methods reported in the present paper include chemical vapor deposition, doping, liquid-phase repair, external energy graphitization, and alloying. Detailed analyses and comparisons of these methods are carried out, and the characterization methods of graphene are introduced. The mechanism, research value, and future out-look of graphene repair are also discussed at length. Graphene defect repair mainly relies on the spontaneous movement of C atoms or heteroatoms to the pore defects under the condition of applied energy. The repair degree and mechanism of graphene repair are also different according to different preparations. The current research on graphene defect repair is still in its infancy, and it is believed that the problem of defect evolution will be explained in more depth in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.G. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321(2008), No. 5887, p. 385.

    CAS  Google Scholar 

  2. A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong, Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9(2009), No. 1, p. 30.

    CAS  Google Scholar 

  3. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8(2008), No. 3, p. 902.

    CAS  Google Scholar 

  4. M. Bastwros, G.Y. Kim, C. Zhu, K. Zhang, S.R. Wang, X.D. Tang, and X.W. Wang, Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering, Compos. Part B, 60(2014), p. 111.

    CAS  Google Scholar 

  5. L. Zhang, G.M. Hou, W. Zhai, Q. Ai, J.K. Feng, L. Zhang, P.C. Si, and L.J. Ci, Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles, J. Alloys Compd., 748(2018), p. 854.

    CAS  Google Scholar 

  6. Z.H. Yu, W.S. Yang, C. Zhou, N.B. Zhang, Z.L. Chao, H. Liu, Y.F. Cao, Y. Sun, P.Z. Shao, and G.H. Wu, Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method, Carbon, 141(2019), p. 25.

    CAS  Google Scholar 

  7. L. Xin, X. Tian, W.S. Yang, G. Chen, J. Qiao, F.J. Hu, Q. Zhang, and G.H. Wu, Enhanced stability of the diamond/Al composites by W coatings prepared by the magnetron sputtering method, J. Alloys Compd., 763(2018), p. 305.

    CAS  Google Scholar 

  8. X.H. Liu, J.J. Li, E.Z. Liu, Q.Y. Li, C.N. He, C.N. Shi, and N.Q. Zhao, Effectively reinforced load transfer and fracture elongation by forming Al4C3 for in-sttu synthesizing carbon nanotube reinforced Al matrix composites, Mater. Sci. Eng. A, 718(2018), p. 182.

    CAS  Google Scholar 

  9. L.J. Ci, Z.Y. Ryu, N.Y. Jin-Phillipp, and M. Rühle, Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Mater., 54(2006), No. 20, p. 5367.

    CAS  Google Scholar 

  10. W.W. Zhou, S. Sasaki, and A. Kawasaki, Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment, Carbon, 78(2014), p. 121.

    CAS  Google Scholar 

  11. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, Determination of the local chemical structure of graphene oxide and reduced graphene oxide, Adv. Mater., 22(2010), No. 40, p. 4467.

    CAS  Google Scholar 

  12. A.C. Crowther, A. Ghassaei, N. Jung, and L.E. Brus, Strong charge-transfer doping of 1 to 10 layer graphene by NO2, ACS Nano, 6(2012), No. 2, p. 1865.

    CAS  Google Scholar 

  13. A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143(2007), No. 1–2, p. 47.

    CAS  Google Scholar 

  14. J.X. Wu, H. Xu, and J. Zhang, Raman spectroscopy of graphene, Acta Chim. Sinica, 72(2014), No. 3, p. 301.

    CAS  Google Scholar 

  15. L.M. Malard, M.A. Pimenta G. Dresselhaus, and M.S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 473(2009), No. 5–6, p. 51.

    CAS  Google Scholar 

  16. J. Lee, K.S. Novoselov, and H.S. Shin, Interaction between metal and graphene: Dependence on the layer number of graphene, ACS Nano, 5(2011), No. 1, p. 608.

    CAS  Google Scholar 

  17. H.M.I. Jaim, D.P. Cole, and L.G. Salamanca-Riba, Characterization of carbon nanostructures in Al and Ag covetic alloys, Carbon, 111(2017), p. 309.

    CAS  Google Scholar 

  18. S. Grimm, M. Schweiger, S. Eigler, and J. Zaumseil, High-quality reduced graphene oxide by CVD-assisted annealing, J. Phys. Chem. C, 120(2016), No. 5, p. 3036.

    CAS  Google Scholar 

  19. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, and C. Casiraghi, Probing the nature of defects in graphene by Raman spectroscopy, Nano Lett., 12(2012), No. 8, p. 3925.

    CAS  Google Scholar 

  20. A.C. Ferrari and D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol., 8(2013), No. 4, p. 235.

    CAS  Google Scholar 

  21. K. Sato, R. Saito, Y. Oyama, J. Jiang, L.G. Cancado, M.A. Pimenta, A. Jorio, G.G. Samsonidze, G. Dresselhaus, and M.S. Dresselhaus, D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size, Chem. Phys. Lett., 427(2006), No. 1–3, p. 117.

    CAS  Google Scholar 

  22. L.G. Cancado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, and A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett., 11(2011), No. 8, p. 3190.

    CAS  Google Scholar 

  23. L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, and M.A. Pimenta, General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy, Appl. Phys. Lett., 88(2006), No. 16, art. No. 163106.

  24. L. Daukiya, C. Mattioli, D. Aubel, S. Hajjar-Garreau, F. Vonau, E. Denys, G. Reiter, J. Fransson, E. Perrin, M.L. Bocquet, C. Bena, A. Gourdon, and L. de Laborderie Simon, Covalent functionalization by cycloaddition reactions of pristine defect-free graphene, ACS Nano, 11(2017), No. 1, p. 627.

    CAS  Google Scholar 

  25. S.M. Hafiz, S.K. Chong, N.M. Huang, and S. Abdul Rahman, Fabrication of high-quality graphene by hot-filament thermal chemical vapor deposition, Carbon, 86(2015), p. 1.

    Google Scholar 

  26. B. Lesiak, L. Kövér, J. Tóth, J. Zemek, P. Jiricek, A. Kromka, and N. Rangam, C sp2/sp3 hybridisations in carbon nanomaterials — XPS and (X)AES study, Appl. Surf. Sci., 452(2018), p. 223.

    CAS  Google Scholar 

  27. N. Dwivedi, S. Kumar, H.K. Malik, Govind, C.M.S. Rauthan, and O.S. Panwar, Correlation of sp(3) and sp(2) fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films, Appl. Surf. Sci., 257(2011), No. 15, p. 6804.

    CAS  Google Scholar 

  28. W.J. Xie, L.T. Weng, K.M. Ng, C.K. Chan, and C.M. Chan, Defects of clean graphene and sputtered graphite surfaces characterized by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy, Carbon, 112(2017), p. 192.

    CAS  Google Scholar 

  29. H. Asgharzadeh and M. Sedigh, Synthesis and mechanical properties of Al matrix composites reinforced with few-layer graphene and graphene oxide, J. Alloys Compd., 728(2017), p. 47.

    CAS  Google Scholar 

  30. R. Rozada, J.I. Paredes, M.J. Lopez, S. Villar-Rodil, I. Cabria, J.A. Alonso, A. Martinez-Alonso, and J.M.D. Tascon, From graphene oxide to pristine graphene: Revealing the inner workings of the full structural restoration, Nanoscale, 7(2015), No. 6, p. 2374.

    CAS  Google Scholar 

  31. W.T. Su, N. Kumar, A. Krayev, and M. Chaigneau, In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale, Nat. Commun., 9(2018), No. 1, art. No. 2891.

  32. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide, Carbon, 49(2011), No. 9, p. 3019.

    CAS  Google Scholar 

  33. C. Xu, R.S. Yuan, and X. Wang, Selective reduction of graphene oxide, New Carbon Mater., 29(2014), No. 1, p. 61.

    CAS  Google Scholar 

  34. R. Ramachandran, S. Felix, G.M. Joshi, B.P.C. Raghupathy, S.K. Jeong, and A.N. Grace, Synthesis of graphene platelets by chemical and electrochemical route, Mater. Res. Bull., 48(2013), No. 10, p. 3834.

    CAS  Google Scholar 

  35. D.W. Choi, H. Park, J.H. Lim, T.H. Han, and J.S. Park, Three-dimensionally stacked Al2O3/graphene oxide for gas barrier applications, Carbon, 125(2017), p. 464.

    CAS  Google Scholar 

  36. D.T. Zhu, H.H. Pu, P. Lv, Z.J. Zhu, C.H. Yang, R.L. Zheng, Z.Y. Wang, C.X. Liu, E.T. Hu, J.J. Zheng, K.H. Yu, W. Wei, L.Y. Chen, and J.H. Chen, Healing of reduced graphene oxide with methane plus hydrogen plasma, Cabbon, 120(2017), p. 274.

    CAS  Google Scholar 

  37. M. Cheng, R. Yang, L.C. Zhang, Z.W. Shi, W. Yang, D.M. Wang, G.B. Xie, D.X. Shi, and G.Y. Zhang, Restoration of graphene from graphene oxide by defect repair, Carbon, 50(2012), No. 7, p. 2581.

    CAS  Google Scholar 

  38. V. López, R.S. Sundaram, C. Gómez-Navarro, D. Olea, M. Burghard, J. Gómez-Herrero, F. Zamora, and K. Kern, Chemical vapor deposition repair of graphene oxide: A route to highly-conductive graphene monolayers, Adv. Mater., 21(2009), No. 46, p. 4683.

    Google Scholar 

  39. C.Y. Su, Y.P. Xu, W.J. Zhang, J.W. Zhao, A.P. Liu, X.H. Tang, C.H. Tsai, Y.Z. Huang, and L.J. Li, Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors, ACS Nano, 4(2010), No. 9, p. 5285.

    CAS  Google Scholar 

  40. B.M. Zhou, X.M. Qian, M.M. Li, J.L. Ma, L.S. Liu, C.S. Hu, Z.W. Xu, and X.N. Jiao, Tailoring the chemical composition and dispersion behavior of fluorinated graphene oxide via CF4 plasma, J. Nanopart. Res., 17(2015), No. 3, p. 1.

    Google Scholar 

  41. K.H. Kim, M. Yang, K.M. Cho, Y.S. Jun, S.B. Lee, and H.T. Jung, High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures, Sci. Rep., 3(2013), art. No. 3251.

  42. K.C. Cao, Y. Tian, Y.Z. Zhang, X.D. Yang, C.Y. Bai, Y. Luo, X.S. Zhao, L.J. Ma, and S.J. Li, Strategy and mechanism for controlling the direction of defect evolution in graphene: Preparation of high quality defect healed and hierarchically porous graphene, Nanoscale, 6(2014), No. 22, p. 13518.

    CAS  Google Scholar 

  43. T.T. Tung, F. Alotaibi, M.J. Nine, R. Silva, D.N.H. Tran, I. Janowska, and D. Losic, Engineering of highly conductive and ultra-thin nitrogen-doped graphene films by combined methods of microwave irradiation, ultrasonic spraying and thermal annealing, Chem. Eng., 338(2018), p. 764.

    CAS  Google Scholar 

  44. A. Omidvar, M.R. RashidianVaziri, and B. Jaleh, Enhancing the nonlinear optical properties of graphene oxide by repairing with palladium nanoparticles, Physica E, 103(2018), p. 239.

    CAS  Google Scholar 

  45. G.Q. Xin, T.K. Yao, H.T. Sun, S.M. Scott, D.L. Shao, G.K. Wang, and J. Lian, Highly thermally conductive and mechanically strong graphene fibers, Selena, 349(2015), No. 6252, p. 1083.

    CAS  Google Scholar 

  46. C.P. Ruan, Z. Yang, H.G. Nie, X.M. Zhou, Z.Q. Guo, L. Wang, X.W. Ding, X.A. Chen, and S.M. Huang, Three-dimensional sp2 carbon networks prepared by ultrahigh temperature treatment for ultrafast lithium-sulfur batteries, Nanoscale, 10(2018), No. 23, p. 10999.

    CAS  Google Scholar 

  47. R. Rozada, J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J.M.D. Tascón, Towards full repair of defects in reduced graphene oxide films by two-step graphitization, Nano Res., 6(2013), No. 3, p. 216.

    CAS  Google Scholar 

  48. H.Y. Sun, X.M. Li, Y.C. Li, G.X. Chen, Z.D. Liu, F.E. Alam, D. Dai, L. Li, L. Tao, J.B. Xu, Y. Fang, X.S. Li, P. Zhao, N. Jiang, D. Chen, and C.T. Lin, High-quality monolithic graphene films via laterally stitched growth and structural repair of isolated flakes for transparent electronics, Chem. Mater., 29(2017), No. 18, p. 7808.

    CAS  Google Scholar 

  49. L. Chen, Z.W. Xu, J. Li, C.Y. Min, L.S. Liu, X.Y. Song, G.W. Chen, and X.F. Meng, Reduction and disorder in graphene oxide induced by electron-beam irradiation, Mater. Lett., 65(2011), No. 8, p. 1229.

    CAS  Google Scholar 

  50. J. Shi, W.W. Jiang, L.S. Liu, M.L. Jing, F.Y. Li, Z.W. Xu, and X.X. Zhang, Elucidating synthesis of noble metal nanoparticles/graphene oxide in free-scavenger γ-irradiation, Curr. Appl. Phys., 19(2019), No. 7, p. 780.

    Google Scholar 

  51. Z.W. Xu, Y.Y. Zhang, X.M. Qian, J. Shi, L. Chen, B.D. Li, J.R. Niu, and L.S. Liu, One step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal, Appl. Surf. Sci., 316(2014), p. 308.

    CAS  Google Scholar 

  52. Y.Y. Zhang, L. Chen, Z.W. Xu, Y.L. Li, B.M. Zhou, M.J. Shan, Z. Wang, Q.W. Guo, and X.M. Qian, Preparing graphene with notched edges and nanopore defects by γ-ray etching of graphite oxide, Mater. Lett., 89(2012), p. 226.

    CAS  Google Scholar 

  53. Y. Shi, D.S. Xiong, J.L. Li, K. Wang, and N. Wang, In situ repair of graphene defects and enhancement of its reinforcement effect in polyvinyl alcohol hydrogels, RSC Adv., 7(2017), No. 2, p. 1045.

    CAS  Google Scholar 

  54. Z.W. Xu, L. Chen, J.L. Li, R. Wang, X.M. Qian, X.Y. Song, L.S. Liu, and G.S. Chen, Oxidation and disorder in few-layered graphene induced by the electron-beam irradiation, Appl. Phys. Lett., 98(2011), No. 18, art. No. 183112.

  55. Y.F. Zhang, J. Shi, C. Chen, N. Li, Z.W. Xu, L.S. Liu, L.H. Zhao, J. Li, and M.L. Jing, Structural evolution of defective graphene under heat treatment and gamma irradiation, Physica E, 97(2018), p. 151.

    CAS  Google Scholar 

  56. D. Voiry, J.U. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin, and M. Chhowalla, High-quality graphene via microwave reduction of solution-exfoliated graphene oxide, Science, 353(2016), No. 6306, p. 1413.

    CAS  Google Scholar 

  57. P.Z. Shao, W.S. Yang, Q. Zhang, Q.Y. Meng, X. Tan, Z.Y. Xiu, J. Qiao, Z.H. Yu, and G.H. Wu, Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method, Composites Part A, 109(2018), p. 151.

    CAS  Google Scholar 

  58. R. Guan, Y. Wang, S. Zheng, N. Su, Z. Ji, Z. Liu, Y. An, and B. Chen, Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets, Mater. Sci. Eng. A, 754(2019), p. 437.

    CAS  Google Scholar 

  59. X.H. Liu, J.J. Li, E.Z. Liu, C.N. He, C.S. Shi, and N.Q. Zhao, Towards strength-ductility synergy with favorable strengthening effect through the formation of a quasi-continuous graphene nanosheets coated Ni structure in aluminum matrix composite, Mater. Sci. Eng. A, 748(2019), p. 52.

    CAS  Google Scholar 

  60. J. Wang, X. Zhang, N.Q. Zhao, and C.N. He, In situ synthesis of copper-modified graphene-reinforced aluminum nanocomposites with balanced strength and ductility, J. Mater. Sci., 54(2018), No. 7, p. 5498.

    Google Scholar 

  61. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, and V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nat. Chem., 2(2010), No. 7, p. 581.

    CAS  Google Scholar 

  62. T. Sun, S. Fabris, and S. Baroni, Surface precursors and reaction mechanisms for the thermal reduction of graphene basal surfaces oxidized by atomic oxygen, J. Phys. Chem. C, 115(2011), No. 11, p. 4730.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51871073, 51871072, 51771063, 61604086, and U1637201), China Postdoctoral Science Foundation (Nos. 2016M590280 and 2017T100240), Heilongjiang Postdoctoral Foundation (No. LBH-Z16075), and the Fundamental Research Funds for the Central Universities (Nos. HIT.NSRIF.20161 and HIT. MK-STISP. 201615).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-shu Yang or Gao-hui Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, By., Yang, Ws., Zhang, Q. et al. Research progress on the characterization and repair of graphene defects. Int J Miner Metall Mater 27, 1179–1190 (2020). https://doi.org/10.1007/s12613-020-2031-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2031-2

Keywords

Navigation