Skip to main content
Log in

Simulation of recrystallization based on EBSD data using a modified Monte Carlo model that considers anisotropic effects in cold-rolled ultra-thin grain-oriented silicon steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A Monte Carlo Potts model was developed to simulate the recrystallization process of a cold-rolled ultra-thin grain-oriented silicon steel. The orientation and image quality data from electron backscatter diffraction measurements were used as input information for simulation. Three types of nucleation mechanisms, namely, random nucleation, high-stored-energy site nucleation (HSEN), and high-angle boundary nucleation (HABN), were considered for simulation. In particular, the nucleation and growth behaviors of Goss-oriented ({011}<100>) grains were investigated. Results showed that Goss grains had a nucleation advantage in HSEN and HABN. The amount of Goss grains was the highest according to HABN, and it matched the experimental measurement. However, Goss grains lacked a size advantage across all mechanisms during the recrystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Mishra, C. Därmann, and K. Lücke, On the development of the goss texture in iron-3% silicon, Acta Metall., 32(1984), No. 12, p. 2185.

    Article  CAS  Google Scholar 

  2. K.I. Arai and K. Ishiyama, Rolled texture and magnetic properties of 3% silicon steel, J. Appl. Phys., 64(1988), No. 10, p. 5352.

    Article  CAS  Google Scholar 

  3. T. Kubota, Recent progress on non-oriented silicon steel, Steel Res. Int., 76(2005), No. 6, p. 464.

    Article  CAS  Google Scholar 

  4. X.H. Gao, K.M. Qi, and C.L. Qiu, Magnetic properties of grain oriented ultra-thin silicon steel sheets processed by conventional rolling and cross shear rolling, Mater. Sci. Eng. A, 430(2006), No. 1–2, p. 138.

    Google Scholar 

  5. H.Y. Song, H.T. Liu, Y.P. Wang, and G.D. Wang, Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method, J. Magn. Magn. Mater., 426(2017), p. 32.

    Article  CAS  Google Scholar 

  6. D. Dorner, S. Zaefferer, and D. Raabe, Retention of the Goss orientation between microbands during cold rolling of an Fe-3% Si single crystal, Acta Mater., 55(2007), No. 7, p. 2519.

    Article  CAS  Google Scholar 

  7. J.T. Park and J.A. Szpunar, Evolution of recrystallization texture in nonoriented electrical steel, Acta Mater., 51(2003), No. 11, p. 3037.

    Article  CAS  Google Scholar 

  8. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, Netherlands, 2004.

    Google Scholar 

  9. D.J. Srolovitz, G.S. Grest, and M.P. Anderson, Computer simulation of recrystallization-I. Homogeneous nucleation and growth, Acta Metall., 34(1986), No. 9, p. 1833.

    Article  CAS  Google Scholar 

  10. Y. Liu, T. Baudin, and R. Penelle, Simulation of normal grain growth by cellular automata, Scripta Mater., 34(1996), No. 11, p. 1679.

    Article  CAS  Google Scholar 

  11. C.E. Krill Iii and L.Q. Chen, Computer simulation of 3-D grain growth using a phase-field model, Acta Mater., 50(2002), No. 12, p. 3059.

    Article  Google Scholar 

  12. D. Raabe and R.C. Becker, Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium, Modell. Simul. Mater. Sci. Eng., 8(2000), No. 4, p. 445.

    Article  CAS  Google Scholar 

  13. D.N. Fan and L.Q. Chen, Diffusion-controlled grain growth in two-phase solids, Acta Mater., 45(1997), No. 8, p. 3297.

    Article  CAS  Google Scholar 

  14. D.Q. Xin, C.X. He, X.H. Gong, H. Wang, L. Meng, G. Ma, P.F. Hou, and W.K. Zhang, Monte Carlo study on abnormal growth of Goss grains in Fe-3%Si steel induced by second-phase particles, Inter. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1397.

    Article  CAS  Google Scholar 

  15. Y.B. Chun, S.L. Semiatin, and S.K. Hwang, Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium, Acta Mater., 54(2006), No. 14, p. 3673.

    Article  CAS  Google Scholar 

  16. D.E. Solas, C.N. Tomé, O. Engler, and H.R. Wenk, Deformation and recrystallization of hexagonal metals: Modeling and experimental results for zinc, Acta Mater., 49(2001), No. 18, p. 3791.

    Article  CAS  Google Scholar 

  17. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current issues in recrystallization: A review, Mater. Sci. Eng. A, 238(1997), No. 2, p. 219.

    Article  Google Scholar 

  18. J.Y. Kang, B. Bacroix, H. Réglé, K.H. Oh, and H.C. Lee, Effect of deformation mode and grain orientation on misorientation development in a body-centered cubic steel, Acta Mater., 55(2007), No. 15, p. 4935.

    Article  CAS  Google Scholar 

  19. N. Rajmohan, Y. Hayakawa, J.A. Szpunar, and J.H. Root, Neutron diffraction method for stored energy measurement in interstitial free steel, Acta Mater., 45(1997), No. 6, p. 2485.

    Article  CAS  Google Scholar 

  20. D.J. Srolovitz, G.S. Grest, M.P. Anderson, and A.D. Rollett, Computer simulation of recrystallization-II. Heterogeneous nucleation and growth, Acta Metall., 36(1988), No. 8, p. 2115.

    Article  CAS  Google Scholar 

  21. F.J. Humphreys, Nucleation in recrystallization, Mater. Sci. Forum, 467–470(2004), No. 1, p. 107.

    Article  Google Scholar 

  22. W.T. Read and W. Shockley, Dislocation models of crystal grain boundary, Phys. Rev., 78(1950), No. 3, p. 275.

    Article  CAS  Google Scholar 

  23. P.A. Beck and P.R. Sperry, Strain induced grain boundary migration in high purity aluminum, J. Appl. Phys., 21(1950), No. 2, p. 150.

    Article  CAS  Google Scholar 

  24. F. Lin, A. Godfrey, M.A. Miodownik, and Q. Liu, Monte Carlo modeling of cube texture evolution in Ni-tapes during grain growth, Mater. Sci. Forum, 467–470(2004), p. 1075.

    Article  Google Scholar 

  25. A.D. Rollett, D.J. Srolovitz, R.D. Doherty, and M.P. Anderson, Computer simulation of recrystallization in non-uniformly deformed metals, Acta Metall., 37(1989), No. 2, p. 627.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from the National Key Research and Development Program of China (No. 2017YFB0903901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Meng or Ning Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Liu, Jm., Zhang, N. et al. Simulation of recrystallization based on EBSD data using a modified Monte Carlo model that considers anisotropic effects in cold-rolled ultra-thin grain-oriented silicon steel. Int J Miner Metall Mater 27, 1251–1258 (2020). https://doi.org/10.1007/s12613-020-2102-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2102-4

Keywords

Navigation