Skip to main content
Log in

Investigation of secondary phases and tensile strength of nitrogen-containing Alloy 718 weldment

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The influence of nitrogen content on the precipitation of secondary phases and the tensile strength of Alloy 718 during gas tungsten arc welding was investigated. Various types of precipitates were characterized using scanning electron microscopy and transmission electron microscopy. The results showed that in the fusion zone, the volume fraction of Nb-rich phases such as Laves, (Nb,Ti)C, and δ phases, as well as Ti-rich phases such as (Ti,Nb)CN and (Ti,Nb)N, increased with increase in the nitrogen content due to the microsegregation of Nb and Ti within interdendritic areas. Nitrogen was also found to decrease the size of γ″ particles within γ dendrites. For precipitates in the partially melted zone, constitutional liquation was observed for both (Nb,Ti)C and (Ti,Nb)N particles. Based on the results of tensile tests, the weld containing 0.015wt% nitrogen exhibited the highest ultimate tensile strength (UTS), whereas more addition of nitrogen led to a decrease in both the UTS and yield strength due to the increased content of brittle Laves phases and decreased size of γ″.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Niang, J. Huez, J. Lacaze, and B. Viguier, Characterizing precipitation defects in nickel based 718 Alloy, Mater. Sci. Forum, 636–637(2010), p. 517.

    Article  Google Scholar 

  2. G.D.J. Ram, A.V. Reddy, K.P. Rao, and G. M. Reddy, Control of Laves phase in Inconel 718 GTA welds with current pulsing, Sci. Technol. Weld. Join., 9(2004), No. 5, p. 390.

    Article  CAS  Google Scholar 

  3. S.G.K. Manikandan, D. Sivakumar, K.P. Rao, and M. Kamaraj, Laves phase in alloy 718 fusion zone — Microscopic and calorimetric studies, Mater. Charact., 100(2015), p. 192.

    Article  CAS  Google Scholar 

  4. K.D. Ramkumar, A.J. Bhalodi, H.J. Ashokbhai, A. Balaji, S. Aravind, K.M. Aravind, and V. Varma, Effect of Mo-rich fillers in pulsed current gas tungsten arc welding of Inconel 718 for improved strength and hot corrosion resistance, J. Mater. Eng. Perform., 26(2017), No. 11, p. 5620.

    Article  CAS  Google Scholar 

  5. J.L. Zhang, Q.Y. Guo, Y.C. Liu, C. Li, L.M. Yu, and H.J. Li, Effect of cold rolling and first precipitates on the coarsening behavior of γ″-phases in Inconel 718 alloy, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1087.

    Article  CAS  Google Scholar 

  6. J.N. DuPont, J.C. Lippold, and S.D. Kiser, Welding Metallurgy and Weldability of Nickel-base Alloys, John Wiley & Sons, New Jersey, 2009.

    Book  Google Scholar 

  7. X.S. Xie, G.L. Wang, J.X. Dong, C.W. Wu, J. Radavich, G.S. Shen, and B.A. Lindsley, Alpha chromium formation in alloy 718 and its effect on creep crack propagation, [in] Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, 2001, p. 399.

  8. Z.N. Bi, J.X. Dong, M.C. Zhang, L. Zheng, and X.S. Xie, Mechanism of α-Cr precipitation and crystallographic relationships between α-Cr and δ phases in Inconel 718 alloy after long-time thermal exposure, Int. J. Miner. Metall. Mater., 17(2010), No. 3, p. 312.

    Article  CAS  Google Scholar 

  9. Y.N. Zhang, X. Cao, P. Wanjara, and M. Medraj, Tensile properties of laser additive manufactured Inconel 718 using filler wire, J. Mater. Res., 29(2014), No. 17, p. 2006.

    Article  CAS  Google Scholar 

  10. S.L. Cockcroft, T. Degawa, A. Mitchell, D.W. Tripp, and A. Schmalz, Inclusion precipitation in superalloys, [in] S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarotrom, eds., Superalloys 1992, p. 577.

  11. J.J. Ruan, N. Ueshima, and K. Oikawa, Phase transformations and grain growth behaviors in superalloy 718, J. Alloys Compd., 737(2018), p. 83.

    Article  CAS  Google Scholar 

  12. X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, and D. Feng, Investigation of oxide inclusions and primary carbonitrides in Inconel 718 superalloy refined through electroslag remelting process, Metall. Mater. Trans. B, 43(2012), p. 1596.

    Article  CAS  Google Scholar 

  13. M.R. Orr, Solidification Cracking Performance and Metallurgical Analysis of Filler Metal 82 [Dissertation], The Ohio State University, Columbus, 2016, p. 141.

    Google Scholar 

  14. E.R. Cutler, A.J. Wasson, and G.E. Fuchs, Effect of minor alloying additions on the carbide morphology in a single crystal Ni-base superalloy, Scripta Mater., 58(2008), No. 2, p. 146.

    Article  CAS  Google Scholar 

  15. K.H. Tseng and C.P. Chou, The study of nitrogen in argon gas on the angular distortion of austenitic stainless steel weldments, J. Mater. Process. Technol., 142(2003), No. 1, p. 139.

    Article  CAS  Google Scholar 

  16. T. Alam, P.J. Felfer, M. Chaturvedi, L.T. Stephenson, M.R. Kilburn, and J.M. Cairney, Segregation of B, P, and C in the Ni-based superalloy, Inconel 718, Metall. Mater. Trans. A, 43(2012), No. 7, p. 2183.

    Article  CAS  Google Scholar 

  17. L.A. Jackman, M.D. Boldy, and A.L. Coffey, The influence of reduced carbon on Alloy 718, [in] E.A. Loria, ed., Superalloys 718, 625 and Various Derivatives, 1991, p. 261.

  18. H. Herold, M. Zinke, and A. Hübner, Investigations on the use of nitrogen shielding gas in welding and its influence on the hot crack behaviour of high-temperature resistant fully austenitic Ni- and Fe-base alloys, Weld. World, 49(2005), No. 5–6, p. 50.

    Article  CAS  Google Scholar 

  19. B. Nabavi, M. Goodarzi, and V. Amani, Nitrogen effect on the microstructure and mechanical properties of nickel alloys, Weld. J., 94(2015), p. 53.

    Google Scholar 

  20. B. Nabavi, M. Goodarzi, and A.K. Khan, Metallurgical effects of nitrogen on the microstructure and hot corrosion behavior of Alloy 718 weldment, Mater. Charact., 157(2019), art. No. 109916.

  21. X.B. Huang, Y. Zhang, Y.L. Liu, and Z.Q. Hu, Effect of small amount of nitrogen on carbide characteristics in unidirectional Ni-base superalloy, Metall. Mater. Trans. A, 28(1997), p. 2143.

    Article  Google Scholar 

  22. X.L. Guo, J.B. Yu, X.F. Li, Y. Hou, and Z.M. Ren, Effect of nitrogen content on the microstructure and mechanical properties of a cast nickel-base superalloy, Ironmaking Steelmaking, 45(2018), No. 3, p. 215.

    Article  CAS  Google Scholar 

  23. E.R. Cutler, A.J. Wasson, and G.E.Ã. Fuchs, Effect of minor alloying additions on the solidification of single-crystal Ni-base superalloys, J. Cryst. Growth, 311(2009), No. 14, p. 3753.

    Article  CAS  Google Scholar 

  24. R. Jiang, B. Chen, X.C. Hao, Y.C. Ma, S. Li, and K. Liu, Micro-segregation and Precipitation of Alloy 690 during Isothermal Solidification: the Role of Nitrogen Content, J. Mater. Sci. Technol., 28(2012), No. 5, p. 446.

    Article  CAS  Google Scholar 

  25. E.A. Bonifaz and N.L. Richards, Modeling cast IN-738 superalloy gas tungsten arc welds, Acta Mater., 57(2009), p. 1785.

    Article  CAS  Google Scholar 

  26. H.G. Kraus, Experimental measurement of thin plate 304 stainless steel GTA weld pool surface temperatures, Weld. J., (1987), p. 353.

  27. A.J. Ramirez and J.C. Lippold, High temperature behavior of Ni-base weld metal: Part I. Ductility and microstructural characterization, Mater. Sci. Eng. A, 380(2004), No. 1–2, p. 259.

    Article  Google Scholar 

  28. N. El-bagoury, K. Yamamoto, H. Miyahara, and K. Ogi, Influence of rhenium and cooling rate on the solidification of Ni base superalloys, Inconel 718, Inconel 718, Mater. Trans., 46(2005), No. 5, p. 909.

    Article  CAS  Google Scholar 

  29. H.J. Zhang, C. Li, Q.Y. Guo, Z.Q. Ma, Y. Huang, H.J. Li, and Y.C. Liu, Delta precipitation in wrought Inconel 718 alloy; the role of dynamic recrystallization, Mater. Charact., 133(2017), p. 138.

    Article  CAS  Google Scholar 

  30. R.W. Messler Jr, A Practical Guide to Welding Solutions: Overcoming Technical and Material-Specific Issues, John Wiley & Sons, Weinheim, 2019.

    Book  Google Scholar 

  31. L. Iorio, M. Cortie, and R. Jones, Technical note: Solubility of nitrogen in experimental low nickel austenitic stainless steels, J. S. Afr. Inst. Min. Metall., 94(1994), No. 7, p. 173.

    CAS  Google Scholar 

  32. S. Kibey, J.B. Liu, M.J. Curtis, D.D. Johnson, and H. Sehitoglu, Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels, Acta Mater., 54(2006), No. 11, p. 2991.

    Article  CAS  Google Scholar 

  33. L. Mosecker and A. Saeed-Akbari, Nitrogen in chromium-manganese stainless steels: A review on the evaluation of stacking fault energy by computational thermodynamics, Sci. Technol. Adv. Mater., 14(2013), No. 3, art. No. 033001.

  34. V.G. Gavriljuk, V.N. Shivanyuk, and B.D. Shanina, Change in the electron structure caused by C, N and H atoms in iron and its effect on their interaction with dislocations, Acta Mater., 53(2005), No. 19, p. 5017.

    Article  CAS  Google Scholar 

  35. N. Saenarjhan, J.H. Kang, and S.J. Kim, Effects of carbon and nitrogen on austenite stability and tensile deformation behavior of 15Cr-15Mn-4Ni based austenitic stainless steels, Mater. Sci. Eng. A, 742(2019), p. 608.

    Article  CAS  Google Scholar 

  36. V.G. Gavriljuk, B.D. Shanina, and H. Berns, On the correlation between electron structure and short range atomic order in iron-based alloys, Acta Mater., 48(2000), No. 15, p. 3879.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Iran University of Science and Technology for financial support. The authors also sincerely thank professor O. A. Ojo of the University of Manitoba for the use of his laboratory amenities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Goodarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabavi, B., Goodarzi, M. & Khan, A.K. Investigation of secondary phases and tensile strength of nitrogen-containing Alloy 718 weldment. Int J Miner Metall Mater 27, 1259–1268 (2020). https://doi.org/10.1007/s12613-020-2013-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2013-4

Keywords

Navigation