Skip to main content
Log in

Diffusion coefficient of Ti4+ in calcium ferrite/calcium titanate diffusion couple

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This study investigated the interdiffusion of calcium ferrite/calcium titanate system in the time range of 0–120 min by the diffusion couple method in a CO/N2 reducing atmosphere at 700°C. The results show that after the diffusion reaction occurred, no longitudinal agglomerations were present on the substrate surface on the calcium titanate side. When the diffusion time was increased to 105 min, a net vacancy flow from calcium titanate to calcium ferrite might have occurred, causing the surface of the calcium ferrite substrate to collapse. The thickness of the diffusion layer of the calcium ferrite/calcium titanate system was about 17–48 µm, which conforms to the parabolic law of diffusion. The diffusion coefficient and the Ti4+ concentration in the calcium ferrite/calcium titanate system are related. This shows an increase in the diffusion coefficient with the increase of Ti4+ concentration, and the diffusion coefficient value was in the range of 10−12–10−11 cm2·s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Q.X Wu, J.P. Wang, D. Che, and Y. Gu, Situation analysis and sustainable development suggestions of vanadium resources in china, Resour. Ind., 2016, No. 3, p. 29.

  2. S. Li, Study on China’s Iron Ore Import and Countermeasures [Dissertation], Dongbei University of Finance and Economics, Dalian, 2010.

    Google Scholar 

  3. D.B. Zhang, H.M. Wan, and J. Zheng, Analysis on global iron ore resources and China’s iron ore supply and demand, China Metall., 2004, No. 6, p. 26.

  4. F.K. Meng, Current status and prospects of utilization of titanium resources in Chengde, Titanium Ind.Prog., 2001, No. 5, p. 11.

  5. J.M. Ma and C.X. Cheng, New types of development and utilization of iron ore resources in China—Ultra-lean vanadium-titanium magnetite of Chengde, Land Resour. Inf., 2006, No. 11, p. 53.

  6. J.H. Ju, X.X. Huang, Y.Z. Xue, and M. Song, Thoughts of mineral resources conservation and comprehensive utilization in China in new era, ChinaMin. Mag., 27(2018), No. 1, p. 1.

    Google Scholar 

  7. J.S. Zhu, Beneficiation and comprehensive utilization of vanadium-titanium magnetite, Met. Mine, 2000, No. 1, p. 1.

  8. W.Z. Fu, Basic analysis of the characteristics and comprehensive utilization of the vanadium-titanium magnetite resources in Panxi, Multipurpose Util. Miner. Resour., 1996, No. 1, p. 27.

  9. M.X. Xu, Influences of metallurgical properties of sinter on its quality and major operation indexes of blast furnace, Sintering Pelletizing, 39(2014), No. 3, p. 1.

    CAS  Google Scholar 

  10. Y. Chen, The Investigation of Phase Constitution and Reaction Between Titanium Dioxide and Calcium Ferrite [Dissertation], Chongqing University, Chongqing, 2017.

    Google Scholar 

  11. G.J. Cheng, X.X. Xue, T. Jiang, and P.N. Duan, Effect of TiO2 on the crushing strength and smelting mechanism of high-chromium vanadium-titanium magnetite pellets, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1713.

    Article  CAS  Google Scholar 

  12. M.G. He, Effect of w(TiO2) on sintering properties of high titanium vanadium-titanium magnetite, Iron Steel, 51(2016), No. 5, p. 9.

    Google Scholar 

  13. R. Budzik, The balance of titanium and vanadium in the blast furnace with the use of sinter containing a titanium-vanadium-magnetite concentrate, Metalurgija, 46(2007), No. 2, p. 145.

    CAS  Google Scholar 

  14. C.Y. Ding, X.W. Lv, Y. Chen, G. Li, W.C. He, and X.M. Lv, Reaction sequence and formation kinetics of perovskite by calcium ferrite-titania reaction, J. Alloys Compd., 789(2019), p. 537.

    Article  CAS  Google Scholar 

  15. H.M. Yang and G.Z. Qiu, Mechanism of TiO2 affecting sinter RDI, Multipurpose Utiliz. Minser. Resour., 1998, No. 1, p. 12.

  16. X.L. Han, H.F. Wang, L.N. Liu, M.Y. Yao, and Y.H. Wang, Influence of basicity on microstructure of vanadium-titanium magnetite sinter, Iron Steel Vanadium Titanium, 30(2009), No. 3, p. 56.

    Google Scholar 

  17. C.E. Loo and N.J. Bdstow, Study on low-temperature reduction degradation mechanism of sinter, Sintering Pelletizing, 20(1995), No. 4, p. 23.

    Google Scholar 

  18. Z.S. Ren, X.J. Hu, S.Y. Li, X.X. Xue, and K.C. Chou, Interdiffusion in the Fe2O3−TiO2 system, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 273.

    Article  CAS  Google Scholar 

  19. Z.S. Ren, X.J. Hu, X.X. Xue, and K.C. Chou, Solid state reaction studies in Fe3O4−TiO2 system by diffusion couple method, J. Alloys Compd., 580(2013), p. 182.

    Article  CAS  Google Scholar 

  20. J.C. Zhao, A combinatorial approach for structural materials, Adv. Eng. Mater., 3(2001), No. 3, p. 143.

    Article  CAS  Google Scholar 

  21. D. Wu, L.G. Zhang, L.B. Liu, W.M. Bai, and L.J. Zeng, Effect of Fe content on microstructures and properties of Ti6Al4V alloy with combinatorial approach, Trans. Nonferrous Met. Soc. China, 28(2018), No. 9, p. 1714.

    Article  CAS  Google Scholar 

  22. Z.P. Jin, The application of ternary diffusion couple technique to study phase diagram, J. Cent. South Univ. Sci. Technol., 1984, No. 1, p. 27.

  23. Z.P. Jin, Application of phase diagram in composite materials and surface treatment, Nat. Mag., 9(1986), No. 5, p. 340.

    CAS  Google Scholar 

  24. A.A. Kodentsov, G.F. Bastin, and F.J.J. van Loo, The diffusion couple technique in phase diagram determination, J. Alloys Compd., 320(2001), No. 2, p. 207.

    Article  CAS  Google Scholar 

  25. J.S. Georgiev and L.A. Anestiev, Influence of the surface processes on the hydrogen permeation through ferritic steel and amorphous Fe40Ni40Mo4B16 alloy specimens, J. Nucl. Mater., 249(1997), No. 2–3, p. 133.

    Article  CAS  Google Scholar 

  26. Z.H. Xu, R.D Mu, X.Q. Cao, and L.M. He, Study of the inter-diffusion behavior between NiCrAlYSi coating and Ni-based superalloy substrate, J. Mater. Eng., 2009, No. 2, p. 67.

  27. C. Greskovich and V.S. Stubican, Interdiffusion studies in the system MgO−Cr2O3, J. Phys. Chem. Solids, 30(1969), No. 4, p. 909.

    Article  CAS  Google Scholar 

  28. P. Zhang, T. Debroy, and S. Seetharaman, Interdiffusion in the MgO−Al2O3 spinel with or without some dopants, Metall. Mater. Trans. A, 27(1996), No. 8, p. 2105.

    Article  Google Scholar 

  29. C.A.C. Sequeira and L. Amaral, Role of kirkendall effect in diffusion processes in solids, Trans. Nonferrous Met. Soc. China, 24(2014), No. 1, p. 1.

    Article  CAS  Google Scholar 

  30. Y.N. Wen, Study on the Formation of Metal Hollows and the Mechanism of Atomic Migration [Dissertation], Shaanxi Normal University, Xi’an, 2011.

    Google Scholar 

  31. Y.M. Sung, W.C. Kwak, and S. Kim, Kinetics of PbTiO3 perovskite phase formation via an interfacial reaction, J. Mater. Res., 17(2002), No. 2, p. 407.

    Article  CAS  Google Scholar 

  32. J.C. Zheng, X.J. Hu, Z.S. Ren, X.X. Xue, and K.C. Chou, Solid-state reaction studies in Al2O3−TiO2 system by diffusion couple method, ISIJ Int., 57(2017), No. 10, p. 1762.

    Article  CAS  Google Scholar 

  33. W.K. Burns, P.H. Klein, E.J. West, and L.E. Plew, Ti diffusion in Ti: LiNbO3 planar and channel optical waveguides, J. Appl. Phys., 50(1979), No. 10, p. 6175.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51674084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-xin Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Yue, Hr. & Xue, Xx. Diffusion coefficient of Ti4+ in calcium ferrite/calcium titanate diffusion couple. Int J Miner Metall Mater 27, 1216–1225 (2020). https://doi.org/10.1007/s12613-020-2057-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2057-5

Keywords

Navigation