Skip to main content
Log in

Fatigue limit assessment of a 6061 aluminum alloy based on infrared thermography and steady ratcheting effect

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To quickly predict the fatigue limit of 6061 aluminum alloy, two assessment methods based on the temperature evolution and the steady ratcheting strain difference under cyclic loading, respectively, were proposed. The temperature evolutions during static and cyclic loadings were both measured by infrared thermography. Fatigue tests show that the temperature evolution was closely related to the cyclic loading, and the cyclic loading range can be divided into three sections according to the regular of temperature evolution in different section. The mechanism of temperature evolution under different cyclic loadings was also analyzed due to the thermoelastic, viscous, and thermoplastic effects. Additionally, ratcheting strain under cyclic loading was also measured, and the results show that the evolution of the ratcheting strain under cyclic loading above the fatigue limit undergone three stages: the first increasing stage, the second steady state, and the final abrupt increase stage. The fatigue limit of the 6061 aluminum alloy was quickly estimated based on transition point of linear fitting of temperature increase and the steady value of ratcheting strain difference. Besides, it is feasible and quick of the two methods by the proof of the traditional S-N curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Y.Q. Chen, S.P. Pan, M.Z. Zhou, D.Q. Yi, D.Z. Xu, and Y.F. Xu, Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy, Mater. Sci. Eng. A, 580(2013), p. 150.

    Article  CAS  Google Scholar 

  2. J.C. Williams and E.A. Starke, Progress in structural materials for aerospace systems, Acta. Mater., 51(2003), No. 19, p. 5775.

    Article  CAS  Google Scholar 

  3. T.M. Roberts and M. Talebzadeh, Fatigue life prediction based on crack propagation and acoustic emission count rates, J. Constr. Steel Res., 59(2003), No. 6, p. 679.

    Article  Google Scholar 

  4. L. Zhang, X.S. Liu, S.H. Wu, Z.Q. Ma, and H.Y. Fang, Rapid determination of fatigue life based on temperature evolution, Int. J. Fatigue, 54(2013), p. 1.

    Article  Google Scholar 

  5. S. Bagavathiappan, B.B. Lahiri, T. Saravanan, J. Philip, and T. Jayakumar, Infrared thermography for condition monitoring—A review, Infrared Phys. Technol., 60(2013), p. 35.

    Article  Google Scholar 

  6. J.L. Fan, X.L. Guo, and C.W. Wu, A new application of the infrared thermography for fatigue evaluation and damage assessment, Int. J. Fatigue, 44(2012), p. 1.

    Article  CAS  Google Scholar 

  7. Z.Q. Cui, H.W. Yang, W.X. Wang, Z.F. Yan, Z.Z. Ma, B.S. Xu, and H.Y. Xu, Research on fatigue crack growth behavior of AZ31B magnesium alloy electron beam welded joints based on temperature distribution around the crack tip, Eng. Fract. Mech., 133(2015), p. 14.

    Article  Google Scholar 

  8. Z.Q. Xu, H.X. Zhang, Z.F. Yan, F. Liu, P.K. Liaw, and W.X. Wang, Three-point-bending fatigue behavior of AZ31B magnesium alloy based on infrared thermography technology, Int. J. Fatigue, 95(2017), p. 156.

    Article  CAS  Google Scholar 

  9. Z.F. Yan, H.X. Zhang, P.D. Chen, and W.X. Wang, Anisotropy of fatigue behavior and tensile behavior of 5A06 aluminum alloy based on infrared thermography, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 32(2017), No. 1, p. 155.

    Article  CAS  Google Scholar 

  10. C.F.C. Bandeira, P.P. Kenedi, L.F.G. Souza, and S. de Barros, On the use of thermographic technique to assess the fatigue performance of bonded joints, Int. J. Adhes. Adhes., 83(2018), p. 137.

    Article  CAS  Google Scholar 

  11. W.P. Yang, X.L. Guo, Q. Guo, and J.L. Fan, Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology, Int. J. Fatigue, 124(2019), p. 461.

    Article  CAS  Google Scholar 

  12. K. Dutta and K.K. Ray, Ratcheting phenomenon and post-ratcheting tensile behavior of an aluminum alloy, Mater. Sci. Eng. A, 540(2012), p. 30.

    Article  CAS  Google Scholar 

  13. R. Kreethi, P. Verma, and K. Dutta, Influence of heat treatment on ratcheting fatigue behavior and post ratcheting tensile properties of commercial aluminum, Trans. Indian Inst. Met., 68(2015), No. 2, p. 229.

    Article  CAS  Google Scholar 

  14. S. Sreenivasan, S.K. Mishra, and K. Dutta, Ratcheting strain and its effect on low cycle fatigue behavior of Al 7075-T6 alloy, Mater. Sci. Eng. A, 698(2017), p. 46.

    Article  CAS  Google Scholar 

  15. S.K. Mishra, H. Roy, and K. Dutta, Influence of ratcheting strain on tensile properties of A356 alloy, Mater. Today: Proc., 5(2018), No. 5, p. 12403.

    CAS  Google Scholar 

  16. Y.C. Lin, Z.H. Liu, X.M. Chen, and Z.L. Long, Cyclic plasticity constitutive model for uniaxial ratcheting behavior of AZ31B magnesium alloy, J. Mater. Eng. Perform., 24(2015), No. 5, p. 1820.

    Article  CAS  Google Scholar 

  17. Y.C. Lin, X.M. Chen, Z.H. Liu, and J. Chen, Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy, Int. J. Fatigue, 48(2013), p. 122.

    Article  CAS  Google Scholar 

  18. B. Yang, P.K. Liaw, M. Morrison, C.T. Liu, R.A. Buchanan, J.Y. Huang, R.C. Kuo, J.G. Huang, and D.E. Fielden, Tempreature evolution during fatigue damage, Intermetallics, 13(2005), No. 3–4, p. 419.

    Article  CAS  Google Scholar 

  19. B. Yang, P.K. Liaw, J.Y. Huang, R.C. Kuo, J.G. Huang, and D.E. Fielden, Stress analyses and geometry effects during cyclic loading using thermography, J. Eng. Mater. Technol., 127(2005), No. 1, p. 75.

    Article  CAS  Google Scholar 

  20. H.T. Lee and G.H. Shaue, The thermomechanical behavior for aluminum alloy under uniaxial tensile loading, Mater. Sci. Eng. A, 268(1999), No. 1–2, p. 154.

    Article  Google Scholar 

  21. B. Yang, G. Wang, W.H. Peter, P.K. Liaw, R.A. Buchanan, D.E. Fielden, Y. Yokoyama, J.Y. Huang, R.C. Kuo, J.G. Huang, and D.L. Klarstrom, Thermal-imaging technologies for detecting damage during high-cycle fatigue, Metal. Mater. Trans. A, 35(2004), No. 1, p. 15.

    Article  Google Scholar 

  22. Y.T. Zhang, Theory of Thermo-Viscoelasticity, Tianjin University Press, Tianjin, 2002.

    Google Scholar 

  23. K.S. Anish and P.V. Pillai, Stress pattern analysis using thermal camera, Int. J. Adv. Prod. Mech. Eng., 2(2016), No. 5, p. 5.

    Google Scholar 

  24. Y.C. Lin, Z.H. Liu, X.M. Chen, and J. Chen, Uniaxial ratcheting and fatigue failure behaviors of hot-rolled AZ31B magnesium alloy under asymmetrical cyclic stress controlled loadings, Mater. Sci. Eng. A, 573(2013), p. 234.

    Article  CAS  Google Scholar 

  25. Z.F. Yan, D.H. Wang, X.L. He, W.X. Wang, H.X. Zhang, P. Dong, C.H. Li, Y.L. Li, J. Zhou, Z. Liu, and L.Y. Sun, Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect, Mater. Sci. Eng. A, 723(2018), p. 212.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51505322 and 51775366) and the Natural Science Foundation of Shanxi Province, China (No. 201801D221137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-xian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Ry., Wang, Wx., Yan, Zf. et al. Fatigue limit assessment of a 6061 aluminum alloy based on infrared thermography and steady ratcheting effect. Int J Miner Metall Mater 27, 1301–1308 (2020). https://doi.org/10.1007/s12613-019-1942-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1942-2

Keywords

Navigation