Skip to main content
Log in

Early-age strength property improvement and stability analysis of unclassified tailing paste backfill materials

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

High-density tailings, small cementitious materials, and additives are used for backfill materials with poor early compressive strength (ECS), which may greatly affect the mining and backfill cycle, to prepare paste backfill materials (PBMs) with a high ECS. The effects and mechanisms of different early strength agents on the property of PBM are investigated. The action mechanism of additives on the properties of PBM is also analyzed through X-ray diffraction, scanning electron microscope, and energy dispersive spectrometry. Results show that the effects of single-component additives 1, 3, and 6 are better than those of the other additives, and their optimal dosages are 3wt%, 1wt%, and 3wt%, respectively. The optimum multicomponent combinations are 1wt% of additive 1 and 1.5wt% of additive 6. The ECS of the paste with additive 10 increases to a greater extent than that of the other pastes because of the synergistic action of additive 1 with additive 6. The hydration product of Ca(OH)2 is consumed, and more C-S-H gels are generated with the addition of additives to paste. Tailings particles, ettringite crystals, and gels intertwined with one another form a dense net-like structure that fills the pores. This structure can significantly improve the ECS of PBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Z.F. Bian, X.X. Miao, S.G. Lei, S.E. Chen, W.F. Wang, and S. Struthers, The challenges of reusing mining and mineral-processing wastes, Science, 337(2012), No. 6095, p. 702.

    CAS  Google Scholar 

  2. M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol., 114(2010), No. 3–4, p. 397.

    Google Scholar 

  3. W. Sun, A.X. Wu, K.P. Hou, Y. Yang, L. Liu, and Y.M. Wen, Experimental study on the microstructure evolution of mixed disposal paste in surface subsidence areas, Minerals, 6(2016), No. 2, p. 43.

    Google Scholar 

  4. W.B. Xu, P.W. Cao, and M.M. Tian, Strength development and microstructure evolution of cemented tailings backfill containing different binder types and contents, Minerals, 8(2018), No. 4, p. 167.

    Google Scholar 

  5. A.X. Wu, Y. Yang, H.Y. Cheng, S.M. Chen, and Y. Han, Status and prospects of paste technology in China, Chin. J. Eng., 40(2018), No. 5, p. 517.

    Google Scholar 

  6. J.H. Liu, Y.C. Zhou, A.X. Wu, and H.J. Wang, Reconstruction of broken Si-O-Si bonds in iron ore tailings (IOTs) in concrete, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1329.

    CAS  Google Scholar 

  7. S.H. Yin, Y.J. Shao, A.X. Wu, Y.M. Wang, and X. Chen, Ex-pansion and strength properties of cemented backfill using sulphidic mill tailings, Constr. Build. Mater., 165(2018), p. 138.

    CAS  Google Scholar 

  8. B. Koohestani, B. Bussiere, T. Belem, and A. Koubaa, Influence of polymer powder on properties of cemented paste backfill, Int. J. Miner. Process., 167(2017), p. 1.

    CAS  Google Scholar 

  9. J.Y. Wu, M.M. Feng, Z.Q. Chen, X.B. Mao, G.S. Han, and Y.M. Wang, Particle size distribution effects on the strength characteristic of cemented paste backfill, Minerals, 8(2018), No. 8, p. 322.

    Google Scholar 

  10. S. Cao, E. Yilmaz, and W.D. Song, Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill, Minerals, 8(2018), No. 8, p. 352.

    Google Scholar 

  11. E. Yilmaz, T. Belem, and M. Benzaazoua, Study of physico-chemical and mechanical characteristics of consolidated and unconsolidated cemented paste backfills, Gospod. Surowcami Miner, 29(2013), No. 1, p. 81.

    CAS  Google Scholar 

  12. E. Yilmaz, Stope depth effect on field behaviour and performance of cemented paste backfills, Int. J. Min. Reclam. Environ., 32(2018), No. 4, p. 273.

    CAS  Google Scholar 

  13. S. Cao, E. Yilmaz, and W.D. Song, Dynamic response of cement-tailings matrix composites under SHPB compression load, Constr. Build. Mater., 186(2018), p. 892.

    CAS  Google Scholar 

  14. X. Zhao, A. Fourie, and C.C. Qi, An analytical solution for evaluating the safety of an exposed face in a paste backfill stope incorporating the arching phenomenon, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1206.

    Google Scholar 

  15. A.X. Wu, Y. Wang, H.J. Wang, S.H. Yin, and X.X. Miao, Coupled effects of cement type and water quality on the properties of cemented paste backfill, Int. J. Miner. Process., 143(2015), p. 65.

    CAS  Google Scholar 

  16. J.X. Fu, W.D. Song, Y.Y. Tan, and C.C. Sorrell, Study on microstructural evolution and strength growth and fracture mechanism of cemented paste backfill, Adv. Mater. Sci. Eng., 2016(2016), art. No. 8792817.

  17. J.R. Zheng, L.J. Guo, X.X. Sun, W.C. Li, and Q. Jia, Study on the strength development of cemented backfill body from lead-zinc mine tailings with sulphide, Adv. Mater. Sci. Eng., 2018(2018), art. No. 7278014.

  18. Y.Y. Tan, X. Yu, D. Elmo, L.H. Xu, and W.D. Song, Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading, Int. Miner. Metall. Mater., 26(2019), No. 4, p. 404.

    CAS  Google Scholar 

  19. E. Yilmaz, T. Belem, B. Bussiere, and M. Benzaazoua, Relationships between microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills, Cem. Concr. Compos., 33(2011), No. 6, p. 702.

    CAS  Google Scholar 

  20. F. Cihangir, B. Ercikdi, A. Kesimal, H. Deveci, and F. Erdemir, Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties, Miner. Eng., 83(2015), p. 117.

    CAS  Google Scholar 

  21. A. Tariq and E.K. Yanful, A review of binders used in cemented paste tailings for underground and surface disposal practices, J. Environ. Manage., 131(2013), p. 138.

    CAS  Google Scholar 

  22. H.Z. Jiao, S.F. Wang, A.X. Wu, H.M. Shen, and J.D. Wang, Cementitious property of NaAlO2-activated Ge slag as cement supplement, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1594.

    CAS  Google Scholar 

  23. L. Yang, J.P. Qiu, H.Q. Jiang, S.Q. Hu, H. Li, and S.B. Li, Use of cemented super-fine unclassified tailings backfill for control of subsidence, Minerals, 7(2017), No. 11, p. 216.

    Google Scholar 

  24. J.P. Qiu, L. Yang, X.G. Sun, J. Xing, and S.B. Li, Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill, Minerals, 7(2017), No. 4, p. 58.

    Google Scholar 

  25. X. Chen, X. Shi, J. Zhou, X.H. Du, Q.S. Chen, and X.Y. Qiu, Effect of overflow tailings properties on cemented paste backfill, J. Environ. Manage., 235(2019), p. 133.

    CAS  Google Scholar 

  26. W.C. Li and M. Fall, Sulphate effect on the early age strength and self-desiccation of cemented paste backfill, Constr. Build. Mater., 106(2016), p. 296.

    CAS  Google Scholar 

  27. O. Nasir and M. Fall, Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages, Tunnelling Underground Space Technol., 25(2010), No. 1, p. 9.

    Google Scholar 

  28. Y. Wang, M. Fall, and A.X. Wu, Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate, Cem. Concr. Compos., 67(2016), p. 101.

    CAS  Google Scholar 

  29. S.H. Yin, A.X. Wu, K.J. Hu, Y. Wang, and Y.K. Zhang, The effect of solid components on the rheological and mechanical properties of cemented paste backfill, Miner. Eng., 35(2012), p. 61.

    Google Scholar 

  30. G.Z. Jiang, A.X. Wu, Y. Wang, and W.T. Lan, Low cost and high efficiency utilization of hemihydrate phosphogypsum: Used as binder to prepare filling material, Constr. Build. Mater., 167(2018), p. 263.

    CAS  Google Scholar 

  31. Y. Liu, C. Lu, H.Q. Zhang, and J.P. Li, Experimental study on chemical activation of recycled powder as a cementitious material in mine paste backfilling, Environ. Eng. Res., 21(2016), No. 4, p. 341.

    Google Scholar 

  32. B. Koohestani, T. Belem, A. Koubaa, and B. Bussiere, Experimental investigation into the compressive strength development of cemented paste backfill containing Nano-silica, Cem. Concr. Compos., 72(2016), p. 180.

    CAS  Google Scholar 

  33. B. Koohestani, A. Koubaa, T. Belem, B. Bussière, and H. Bouzahzah, Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler, Constr. Build. Mater., 121(2016), p. 222.

    Google Scholar 

  34. L. Yang, E. Yilmaz, J.W. Li, H. Liu, and H.Q. Jiang, Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents, Constr. Build. Mater., 187(2018), p. 290.

    CAS  Google Scholar 

  35. B. Koohestani, A.K. Darban, and P. Mokhtari, A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill, Constr. Build. Mater., 173(2018), p. 180.

    CAS  Google Scholar 

  36. D. Ouattara, T. Belem, M. Mbonimpa, and A. Yahia, Effect of superplasticizers on the consistency and unconfined compressive strength of cemented paste backfills, Constr. Build. Mater., 181(2018), p. 59.

    CAS  Google Scholar 

  37. J. Zhang, H.W. Deng, A. Taheri, J.R. Deng, and B. Ke, Effects of superplasticizer on the hydration, consistency, and strength development of cemented paste backfill, Minerals, 8(2018), No. 9, p. 381.

    Google Scholar 

  38. M.B.C. Mangane, R. Argane, R. Trauchessec, A. Lecomte, and M. Benzaazoua, Influence of superplasticizers on mechanical properties and workability of cemented paste backfill, Miner. Eng., 116(2018), p. 3.

    CAS  Google Scholar 

  39. B. Ercikdi, H. Baki, and M. Izki, Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill, J. Environ Manage., 115(2013), p. 5.

    CAS  Google Scholar 

  40. G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Compressive strength characteristics of cemented tailings backfill with alkali-activated slag, Appl. Sci., 8(2018), No. 9, p. 1537.

    Google Scholar 

  41. H.Q. Jiang, Z.J. Qi, E. Yilmaz, J. Han, J.P. Qiu, and C.L. Dong, Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills, Constr. Build. Mater., 218(2019), p. 689.

    CAS  Google Scholar 

  42. H.Q. Jiang, J. Han, Y.H. Li, E. Yilmaz, Q. Sun, and J.P. Liu, Relationship between ultrasonic pulse velocity and uniaxial compressive strength for cemented paste backfill with alkali-activated slag, Nondestr. Test. Eval. (0019). DOI: https://doi.org/10.1080/10589759.2019.1679140

  43. M. Gao, J.H. Liu, A.X. Wu, and X.H. Zhao, Corrosion and deterioration mechanism of rich-water filling materials in typical chloride salt environment, J. Cent. South. Univ. Sci. Technol., 47(2016), No. 8, p. 2776.

    Google Scholar 

  44. A.X. Wu, Y. Wang, and H.J. Wang, Status and prospects of the paste backfill technology, Met. Mine, 2016, No. 7, p. 1.

  45. N.R. Yang and W.H. Yue, The Handbook of Inorganic Non-metallic Materials Atlas, Wuhan University of Technology Press, Wuhan, 2000, p. 4.

    Google Scholar 

  46. D.P. Mishra and S.K. Das, One-dimensional consolidation of sedimented stowed pond ash and pond ash-lime mixture deposits-a comparative study, Part. Sci. Technol., 33(2015), No. 2, p. 172.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51834001) and the Beijing Municipal Natural Science Foundation (No. 2204087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-hong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Liu, Jh., Wu, Ax. et al. Early-age strength property improvement and stability analysis of unclassified tailing paste backfill materials. Int J Miner Metall Mater 27, 1191–1202 (2020). https://doi.org/10.1007/s12613-020-1977-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1977-4

Keywords

Navigation