Skip to main content
Log in

A novel low power and highly efficient inverter design

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

The field of VLSI is evergreen and always growing. Tremendous amount of work is done to embed more gates on a given chip area. This makes it difficult to remove the generated heat. This problem can be solved by using low power circuits. Adiabatic logic style which is advancement over CMOS in terms of power dissipation is a good solution suggested by researchers. In this paper an entirely new approach is presented to address this problem. The proposed circuit dissipates least power as compared to other power saving logic styles. A comparative analysis of all the three logic styles has been presented for better understanding. The circuits are implemented and simulated on Tanner V.13 using 90 nm technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shinghal D, Saxena A, Noor A (2013) Adiabatic logic circuits: a retrospect. MIT Int J Electron Commun Eng 3(2):108–114

    Google Scholar 

  2. Singh R, Mehra R (2013) Power efficient design of multiplexer using adiabatic logic. Int J Adv Eng Technol 6(1):246

    Google Scholar 

  3. Maini AK (2007) Digital electronics: principles, devices, and applications. Wiley, New York

    Book  Google Scholar 

  4. Pecht M, Solomon R, Sandborn P, Wilkinson C, Daso D (2004) Obsolescence prediction and management. Parts selection and management. Wiley, New York, p 231

    Chapter  Google Scholar 

  5. Teichmann P (2011) Adiabatic logic: future trend and system level perspective, vol 34. Springer Science & Business Media, New York

    MATH  Google Scholar 

  6. Athas WC, Svensson LJ, Koller JG, Tzartzanis N, Chou EY-C (1994) Low-power digital systems based on adiabatic-switching principles. IEEE Trans Very Large Scale Integr (VLSI) Syst 2(4):398–407

    Article  Google Scholar 

  7. Razavi B (2002) Design of analog CMOS integrated circuits. Tata McGraw-Hill Education, New York

    Google Scholar 

  8. Moon Y, Jeong D-K (1996) An efficient charge recovery logic circuit. IEICE Trans Electron 79(7):925–933

    Google Scholar 

  9. Chandrakasan AP, Sheng S, Brodersen RW (1992) Low-power CMOS digital design. IEICE Trans Electron 75(4):371–382

    Google Scholar 

  10. Yano K, Yamanaka T, Nishida T, Saito M, Shimohigashi K, Shimizu A (1990) A 3.8-ns CMOS 16* 16-b multiplier using complementary pass-transistor logic. IEEE J Solid State Circuits 25(2):388–395

    Article  Google Scholar 

  11. Veendrick HJM (1984) Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits. IEEE J Solid State Circuits 19(4):468–473

    Article  Google Scholar 

  12. Weste NHE, Eshraghian K (1985) Principles of CMOS VLSI design: a systems perspective. NASA STI/Recon technical report A 85

  13. Watts RK (1989) Submicron integrated circuits. Wiley, New York

    Google Scholar 

  14. Kumar BD, Bharathi M (2013) Design of energy efficient arithmetic circuits using charge recovery adiabatic logic. Int J Eng Trends Technol 4(1):32–40

    Google Scholar 

  15. Reddy SG (2011) Power comparison of CMOS and adiabatic full adder circuit. arXiv preprint arXiv:1110.1549

  16. Maksimovic D, Oklobdzija VG (1995) Clocked CMOS adiabatic logic with single AC power supply. In: ESSCIRC'95: twenty-first European solid-state circuits conference, IEEE, pp 370–373

  17. Denker JS (1994) A review of adiabatic computing. In: Proceedings of 1994 IEEE symposium on low power electronics, IEEE, pp 94–97

  18. Patel B, Kadam P (2015) Comparative analysis of adiabatic logic techniques. Int J Comput Appl 975:8887

    Google Scholar 

  19. Maksimovic D, Oklobdzija VG, Nikolic B, Current KW (2000) Clocked CMOS adiabatic logic with integrated single-phase powerclock supply. IEEE Trans Very Large Scale Integr (VLSI) Syst 8(4):460–463

    Article  Google Scholar 

  20. Dickinson AG, Denker JS (1995) Adiabatic dynamic logic. IEEE J Solid State Circuits 30(3):311–315

    Article  Google Scholar 

  21. Vetuli A, Pascoli SDI, Reyneri LM (1996) Positive feedback in adiabatic logic. Electron Lett 32(20):1867–1869

    Article  Google Scholar 

  22. Liu F, Lau KT (1998) Pass-transistor adiabatic logic with NMOS pull-down configuration. Electron Lett 34(8):739–741

    Article  Google Scholar 

  23. Kim S, Papaefthymiou MC (1999) Single-phase source-coupled adiabatic logic. In: Proceedings of the 1999 international symposium on low power electronics and design, pp 97–99

  24. Hu J, Tiefeng Xu, Li H (2005) A lower-power register file based on complementary pass-transistor adiabatic logic. IEICE Trans Inf Syst 88(7):1479–1485

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetanjali Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Devasia, R. & Sharma, G. A novel low power and highly efficient inverter design. Int. j. inf. tecnol. 12, 1111–1116 (2020). https://doi.org/10.1007/s41870-020-00512-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-020-00512-x

Keywords

Navigation