Skip to main content
Log in

A selected bacterial strain for the self-healing process in cementitious specimens without cell immobilization steps

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The use of microorganisms capable of mediating the bioprecipitation process can be an important application in the self-healing processes of cement specimens. Thus, the present study identified and evaluated five Bacillus strains for potential application in the protocol of self-healing via bioprecipitation. Cell growth, enzyme production, and kinetic parameters conditions were evaluated during the fermentation process. Based on the analysis of 16S rDNA in conjunction with biochemical testing, results demonstrate that the strains are either Bacillus cereus or Bacillus thuringiensis. Strategically it was found that the addition of glycerol to fermentative medium was essential to increase the bacterial concentration (≈ 4.2 × 107 cells mL−1) and production of the enzyme urease (≈ 3.623,2 U.mL−1). The addition of this medium after 40 days of fermentation promoted the self-healing of cracks and increased compressive strength in ≈ 14.2% of the cementitious specimens; therefore, increasing the sustainability and engineering properties of cement-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bentz DP (2008) A review of early-age properties of cement-based materials. Cement Concrete Res 38:196–204

    CAS  Google Scholar 

  2. Alghamri R, Kanellopoulos A, Al-Tabbaa A (2016) Impregnation and encapsulation of lightweight aggregates for self-healing concrete. Constr Build Mater 124:910–921

    CAS  Google Scholar 

  3. Tang W, Kardani O, Cui H (2015) Robust evaluation of self-healing efficiency in cementitious materials - a review. Constr Build Mater 81:233–247

    Google Scholar 

  4. Danish A, Mosaberpanah MA, Usama Salim M (2020) Past and present techniques of self-healing in cementitious materials: a critical review on efficiency of implemented treatments. J Mater Res Technol 9:6883–6899

    CAS  Google Scholar 

  5. Van Tittelboom K, De Belie N (2013) Self-healing in cementitious materials—a review. Materials 6:5–34

    Google Scholar 

  6. Barbosa JMP, Souza RL, Melo CMd, Fricks AT, Soares CMF, Lima ÁS (2012) Biochemical characterisation of lipase from a new strain of Bacillus sp. ITP-001. Quim Nova 35:1173–1178

    CAS  Google Scholar 

  7. Zhu B, Chen Y, Wei N (2019) Engineering biocatalytic and biosorptive materials for environmental applications. Trends Biotechnol 37:661–676

    CAS  PubMed  Google Scholar 

  8. Vijay K, Murmu M, Deo SV (2017) Bacteria based self healing concrete – a review. Constr Build Mater 152:1008–1014

    CAS  Google Scholar 

  9. Tiano P, Cantisani E, Sutherland I, Paget J (2006) Biomediated reinforcement of weathered calcareous stones. J Cult Herit 7:49–55

    Google Scholar 

  10. De Muynck W, Cox K, De Belie N, Verstraete W (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22:875–885

    Google Scholar 

  11. Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36:230–235

    Google Scholar 

  12. Van Tittelboom K, Adesanya K, Dubruel P, Van Puyvelde P, De Belie N (2011) Methyl methacrylate as a healing agent for self-healing cementitious materials. Smart MaterStruct 20:125016

    Google Scholar 

  13. Wang J, Mignon A, Snoeck D, Wiktor V, Boon N, De Belie N (2015) Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Front Microbiol 6:9

    Google Scholar 

  14. Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17:357–367

    CAS  PubMed  Google Scholar 

  15. Achal V, Mukherjee A, Kumari D, Zhang Q (2015) Biomineralization for sustainable construction – a review of processes and applications. Earth-Sci Rev 148:1–17

    CAS  Google Scholar 

  16. Baskar S, Baskar R, Mauclaire L, McKenzie J (2006) Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr Sci 90:58–64

    CAS  Google Scholar 

  17. Mobley HL, Hausinger RP (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev 53:85–108

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biot 36:433–438

    CAS  Google Scholar 

  19. Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    CAS  Google Scholar 

  20. Achal V, Pan X (2014) Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Appl Biochem Biotech 173:307–317

    CAS  Google Scholar 

  21. Dhami NK, Reddy MS, Mukherjee A (2014) Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl Biochem Biotech 172:2552–2561

    CAS  Google Scholar 

  22. Wang XF, Yang ZH, Fang C, Han NX, Zhu GM, Tang JN, Xing F (2019) Evaluation of the mechanical performance recovery of self-healing cementitious materials – its methods and future development: a review. Constr Build Mater 212:400–421

    CAS  Google Scholar 

  23. Gupta S, Pang SD, Kua HW (2017) Autonomous healing in concrete by bio-based healing agents – a review. Constr Build Mater 146:419–428

    Google Scholar 

  24. Erşan YÇ, Da Silva FB, Boon N, Verstraete W, De Belie N (2015) Screening of bacteria and concrete compatible protection materials. Constr Build Mater 88:196–203

    Google Scholar 

  25. Luo M, Qian C (2016) Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Constr Build Mater 121:659–663

    CAS  Google Scholar 

  26. Vashisht R, Attri S, Sharma D, Shukla A, Goel G (2018) Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete. Microbiol Res 207:226–231

    CAS  PubMed  Google Scholar 

  27. Nosouhian F, Mostofinejad D, Hasheminejad H (2015) Influence of biodeposition treatment on concrete durability in a sulphate environment. Biosyst Eng 133:141–152

    Google Scholar 

  28. Achal V, Mukerjee A, Sudhakara Reddy M (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5

    Google Scholar 

  29. Wang J, Jonkers HM, Boon N, De Belie N (2017) Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Appl Microbiol Biot 101:5101–5114

    CAS  Google Scholar 

  30. Son HM, Kim HY, Park SM, Lee HK (2018) Ureolytic/non-ureolytic bacteria co-cultured self-healing agent for cementitious materials crack repair. Materials (Basel, Switzerland) 11:782

    Google Scholar 

  31. Wang JY, Soens H, Verstraete W, De Belie N (2014) Self-healing concrete by use of microencapsulated bacterial spores. Cement Concrete Res 56:139–152

    CAS  Google Scholar 

  32. Torres-Aravena ÁE, Duarte-Nass C, Azócar L, Mella-Herrera R, Rivas M, Jeison D (2018) Can microbially induced calcite precipitation (micp) through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters? Crystals 8:438

    Google Scholar 

  33. Smith AC, Hussey MA (2005) Gram stain protocols. ASM MicrobeLibrary, USA. https://www.asmscience.org/content/education/protocol/protocol.2886

    Google Scholar 

  34. Reiner K (2010) Catalase test protocol. ASM MicrobeLibrary, USA. https://www.asmscience.org/content/education/protocol/protocol.3226

    Google Scholar 

  35. Shields P, Cathcart L (2010) Oxidase Test Protocol. ASM MicrobeLibrary, USA. https://www.asmscience.org/content/education/protocol/protocol.3229

    Google Scholar 

  36. Brink B (2010) Urease test protocol. ASM MicrobeLibrary, USA. https://www.asmscience.org/content/education/protocol/protocol.3223

    Google Scholar 

  37. Buxton R (2005) Blood agar plates and hemolysis protocols. ASM MicrobeLibrary, USA. https://www.asmscience.org/content/education/protocol/protocol.2885

    Google Scholar 

  38. Garrity G, Boone DR, Castenholz RW (2005) Bergey's Manual of Systematic Bacteriology, 2nd edn. Springer, New York

    Google Scholar 

  39. Wilson DJ, Middleton JR, Adkins PRF, Goodell GM (2018) Test Agreement among biochemical methods, MALDI-TOF and 16S rRNA sequencing for the identification of microorganisms isolated from Bovine Milk. J Clin Microbiol JCM 2:01381–11318

    Google Scholar 

  40. Ausubel FM (1999) Short protocols in molecular biology, Current Protocols.

  41. Levy CE, Pedro RJ, Von Nowakonski A, Holanda LM, Brocchi M, Ramo MC (2009) Arcanobacterium pyogenes sepsis in farmer, Brazil. Emerg Infect Dis 15:1131–1132

    PubMed  PubMed Central  Google Scholar 

  42. Matturro B, Pierro L, Frascadore E, Papini MP, Rossetti S (2018) Microbial Community changes in a chlorinated solvents polluted aquifer over the field scale treatment with poly-3-hydroxybutyrate as amendment. Front Microbiol. 9:120–236

    Google Scholar 

  43. Thankappan S, Kandasamy S, Joshi B, Sorokina KN, Taran OP, Uthandi S (2018) Bioprospecting thermophilic glycosyl hydrolases, from hot springs of Himachal Pradesh, for biomass valorization. AMB Express 8:168

    PubMed  PubMed Central  Google Scholar 

  44. Martins MCdF, Freitas Rd, Deuvaux JC, Eller MR, Nero LA, Carvalho AFd (2018) Bacterial diversity of artisanal cheese from the Amazonian region of Brazil during the dry and rainy seasons. Food Res Int 108:295–300

    CAS  PubMed  Google Scholar 

  45. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang J, Van Tittelboom K, De Belie N, Verstraete W (2012) Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater 26:532–540

    Google Scholar 

  48. Ivanov V, Figurovskaya V, Barbalat YA, Ershova N (2005) Chromaticity characteristics of NH2Hg2I3 and I2: molecular iodine as a test form alternative to Nessler’s reagent. J Anal Chem 60:629–632

    CAS  Google Scholar 

  49. Sutormina EF (2004) Spectrophotometric determination of ammonia and nitrogen oxides in the reaction products of ammonia oxidation. J Anal Chem 59:331–334

    CAS  Google Scholar 

  50. ABNT – Associação Brasileira de Normas Técnicas (1994) Concreto: ensaio de compressão de corpos-de-prova cilíndricos. Rio de Janeiro. NBR 5739:2007

    Google Scholar 

  51. American Society for M, Bergey DH, Breed RS, Hitchens AP, Murray EGD (1948) Bergey's manual of determinative bacteriology. Springer, London

    Google Scholar 

  52. Guttmann DM, Ellar DJ (2000) Phenotypic and genotypic comparisons of 23 strains from the Bacillus cereus complex for a selection of known and putative B. thuringiensis virulence factors. FEMS Microbiol Lett 188:7–13

    CAS  PubMed  Google Scholar 

  53. Chen ML, Tsen HY (2002) Discrimination of Bacillus cereus and Bacillus thuringiensis with 16S rRNA and gyrB gene based PCR primers and sequencing of their annealing sites. J Appl Microbiol 92:912–919

    CAS  PubMed  Google Scholar 

  54. Fiuza LM, Polanczyk RA, Crickmore N (2017) Bacillus thuringiensis and Lysinibacillus sphaericus: Characterization and use in the field of biocontrol. Springer, London

    Google Scholar 

  55. Draganic V, Lozo J, Biocanin M, Dimkic I, Garalejic E, Fira D, Stankovic S, Beric T (2017) Genotyping of Bacillus spp. isolate collection from natural samples. Genetika 49:445–456

    Google Scholar 

  56. Liu Y, Lai Q, Göker M, Meier-Kolthoff JP, Wang M, Sun Y, Wang L, Shao Z (2015) Genomic insights into the taxonomic status of the Bacillus cereus group. Sci Rep 5:14082

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Beric T, Urdaci M, Stankovic S, Knezevic-Vukcevic J (2009) RAPD analysis of genetic diversity and qualitative assessment of hydrolytic activities in a collection of Bacillus sp. isolate. Arch Biol Sci 61:645–652

    Google Scholar 

  58. Pinchuk IV, Bressollier P, Sorokulova IB, Verneuil B, Urdaci MC (2002) Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol 153:269–276

    CAS  PubMed  Google Scholar 

  59. da Silva RB, Valicente FH (2013) Molecular characterization of Bacillus thuringiensis using rep-PCR. Springerplus 2:641

    PubMed  PubMed Central  Google Scholar 

  60. Drean P, Fox EM (2015) Pulsed-field gel electrophoresis of bacillus cereus group strains. In: Jordan K, Dalmasso M (eds) Pulse Field Gel Electrophoresis, vol 1301. Springer, New York, pp 71–83

    Google Scholar 

  61. Maiden MCJ (2006) Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561–588

    CAS  PubMed  Google Scholar 

  62. Berg JM, Tymoczko JL, Stryer L, Stryer L (2002) Biochemistry. WH Freeman and Company, New York

    Google Scholar 

  63. Khaliq W, Ehsan MB (2016) Crack healing in concrete using various bio influenced self-healing techniques. Constr Build Mater 102:349–357

    CAS  Google Scholar 

  64. Okwadha GDO, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81:1143–1148

    CAS  PubMed  Google Scholar 

  65. Anbu P, Kang C-H, Shin Y-J, So J-S (2016) Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus 5:250

    PubMed  PubMed Central  Google Scholar 

  66. Ferris FG, Stehmeier LG, Kantzas A, Mourits FM (1996) Bacteriogenic mineral plugging. PETSOC-96-08-06 35:6

    Google Scholar 

  67. Rastegari H, Jazini H, Ghaziaskar HS, Yalpani M (2019) Applications of biodiesel by-products. In: Tabatabaei M, Aghbashlo M (eds) Biodiesel: From Production to Combustion Springer International Publishing. Cham, London

    Google Scholar 

  68. Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biot 36:981–988

    CAS  Google Scholar 

  69. ABCP (2002) Guia Básico de Utilização do Cimento Portland. Associação Brasileira de Cimento Portland São Paulo, São Paulo

    Google Scholar 

  70. Hosseini Balam N, Mostofinejad D, Eftekhar M (2017) Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Constr Build Mater 145:107–116

    CAS  Google Scholar 

  71. Wang Y, Moo YX, Chen C, Gunawan P, Xu R (2010) Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres. J Colloid Interf Sci 352:393–400

    CAS  Google Scholar 

  72. Zhang Z, Xie Y, Xu X, Pan H, Tang R (2012) Transformation of amorphous calcium carbonate into aragonite. J Cryst Growth 343:62–67

    CAS  Google Scholar 

  73. Wi S, Pancoska P, Keiderling TA (1998) Predictions of protein secondary structures using factor analysis on Fourier transform infrared spectra: effect of Fourier self-deconvolution of the amide I and amide II bands. Biospectroscopy 4:93–106

    CAS  PubMed  Google Scholar 

  74. Barbosa MS, Freire CCC, Souza RL, Cabrera-Padilla RY, Pereira MM, Freire MG, Lima ÁS, Soares CMF (2019) Effects of phosphonium-based ionic liquids on the lipase activity evaluated by experimental results and molecular docking. Biotechnol Progr 35:e2816

    Google Scholar 

  75. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Bioch Bioph Sin 39:549–559

    CAS  Google Scholar 

  76. Chen L, Zhang H, Qi Z-P, Yao W, Wan J-J, Shao M, Zhang C-C (2012) Synthesis of calcium carbonate crystals by using bacteria. Synth React Inorg M 42:972–975

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of FAPITEC/SE. This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001; and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors also thank financial support through the grant UNIT for the scholarship of T.M. Santos and B.M. Borges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranyere L. Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, R.P., Ramos, T.M., Borges, B.M. et al. A selected bacterial strain for the self-healing process in cementitious specimens without cell immobilization steps. Bioprocess Biosyst Eng 44, 195–208 (2021). https://doi.org/10.1007/s00449-020-02435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02435-0

Keywords

Navigation