Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 4, 2020

The fate of chlorophyll in phytophagous insects goes beyond nutrition

  • Vincensius S. P. Oetama , Stefan Pentzold ORCID logo and Wilhelm Boland EMAIL logo

Abstract

Chlorophyll (Chl) is a natural compound that is found in all autotrophic plants. Since phytophagous insects ingest the photosynthetically active material with the plant leaves, the question arises if and how herbivores deal with Chl and its degradation products. Here we review findings on Chl degradation in phytophagous insects and highlight the role of these ubiquitous plant metabolites for plant-feeding insects. Due to the anaerobic gut of many insects, the degradation is limited to the removal of the peripheral substituents, while the tetrapyrrole core remains intact. Proteins, such as red fluorescent protein, P252 (a novel 252-kDa protein), and chlorophyllide binding protein have been reported to occur in the insect gut and might be indirectly connected to Chl degradation. Besides of an nutritional value, e.g., by taking up Mg2+ ions or by sequestration of carbon from the phytol side chain, the Chl degradation products may serve the insect, after binding to certain proteins, as antimicrobial, antifungal, and antiviral factors. The protein complexes may also confer protection against reactive oxygen species. The antibiotic potential of proteins and degradation products does not only benefit phytophagous insects but also human being in medical application of cancer treatment for instance. This review highlights these aspects from a molecular, biochemical, and ecological point of view.


Corresponding author: Wilhelm Boland, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knvll-Stra_e 8, 07745Jena, Germany, E-mail:

Acknowledgments

The authors thank Dr. Julia Marshall and Emily Wheeler for editorial assistance.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Hendry, GAF, Houghton, JD, Brown, SB. The degradation of chlorophyll - a biological enigma. New Phytol 1987;107:255-302. https://doi.org/10.1111/j.1469-8137.1987.tb00181.x.10.1111/j.1469-8137.1987.tb00181.xSearch in Google Scholar

2. Gross, J. Pigment in vegetables: chlorophylls and carotenoids. US: Springer Science and Business Media; 1991. https://doi.org/10.1007/978-1-4615-2033-7.10.1007/978-1-4615-2033-7Search in Google Scholar

3. Hosikian, A, Lim, S, Halim, R, Danquah, MK. Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng 2010;2010:391632-42. https://doi.org/10.1155/2010/391632.10.1155/2010/391632Search in Google Scholar

4. Moroney, JV, Ynalvez, RA. Algal photosynthesis. In: Encyclopedia of life sciences. Chichester, UK: John Wiley & Sons, Ltd; 2009.10.1002/9780470015902.a0000322.pub2Search in Google Scholar

5. Von Wettstein, D, Gough, S, Kannangara, CG. Chlorophyll biosynthesis. Plant Cell 1995;7:1039-57. https://doi.org/10.2307/3870056.10.1007/978-1-4615-3304-7_43Search in Google Scholar

6. Woodward, RB, Ayer, WA, Beaton, JM, Bickelhaupt, F, Bonnett, R, Buchschacher, P, et al. The total synthesis of chlorophyll a. Tetrahedron 1990;46:7599-659. https://doi.org/10.1016/0040-4020(90)80003-z.10.1016/0040-4020(90)80003-ZSearch in Google Scholar

7. Krdutler, B, Hvrtensteiner, S. Chlorophyll catabolites and the biochemistry of chlorophyll breakdown. In: Grimm, B, Porra, RJ, R|diger, W, Scheer, H, editors. Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Dordrecht: Springer Netherlands; 2006. p. 237-60.10.1007/1-4020-4516-6_17Search in Google Scholar

8. Hendry, F, Jones, TG. Haems and chlorophylls: comparison of function and formation. J Med Genet 1980;17:1-14. https://doi.org/10.1136/jmg.17.1.1.10.1136/jmg.17.1.1Search in Google Scholar PubMed PubMed Central

9. Beale, SI. Enzymes of chlorophyll biosynthesis. Photosynth Res 1999;60:43-73. https://doi.org/10.1023/a:1006297731456.10.1023/A:1006297731456Search in Google Scholar

10. Eckhardt, U, Grimm, B, Hvrtensteiner, S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 2004;56:1-14. https://doi.org/10.1007/s11103-004-2331-3.10.1007/s11103-004-2331-3Search in Google Scholar PubMed

11. Zapata, M, Garrido, JL, Jeffrey, SW. Chlorophyll c pigments: current status BT - chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm, B, Porra, RJ, R|diger, W, Scheer, H, editors. Dordrecht: Springer Netherlands; 2006. p. 39-53.10.1007/1-4020-4516-6_3Search in Google Scholar

12. Mielke, SP, Kiang, NY, Blankenship, RE, Gunner, MR, Mauzerall, D. Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species. Biochim Biophys Acta Bioenerg 2011;1807:1231-6. https://doi.org/10.1016/j.bbabio.2011.06.007.10.1016/j.bbabio.2011.06.007Search in Google Scholar PubMed

13. Behrendt, L, Brejnrod, A, Schliep, M, Sxrensen, SJ, Larkum, AW, K|hl, M. Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium. ISME J 2015;9:2108. https://doi.org/10.1038/ismej.2015.14.10.1038/ismej.2015.14Search in Google Scholar PubMed PubMed Central

14. Tanaka, A, Tanaka, R. Chlorophyll metabolism. Curr Opin Plant Biol 2006;9:248-55. https://doi.org/10.1016/j.pbi.2006.03.011.10.1016/j.pbi.2006.03.011Search in Google Scholar PubMed

15. Buchanan-Wollaston, V, Earl, S, Harrison, E, et al. The molecular analysis of leaf senescence--a genomics approach. Plant Biotechnol J 2003;1:3-22. https://doi.org/10.1046/j.1467-7652.2003.00004.x.10.1046/j.1467-7652.2003.00004.xSearch in Google Scholar PubMed

16. Guyer, L, Hofstetter, SS, Christ, B, Lira, BS, Rossi, M, Hvrtensteiner, S. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiol 2014;166:44-56. https://doi.org/10.1104/pp.114.239541.10.1104/pp.114.239541Search in Google Scholar PubMed PubMed Central

17. Lim, PO, Kim, HJ, Gil Nam, H. Leaf senescence. Annu Rev Plant Biol 2007;58:115-36. https://doi.org/10.1146/annurev.arplant.57.032905.105316.10.1146/annurev.arplant.57.032905.105316Search in Google Scholar PubMed

18. Moser, S, M|ller, T, Holzinger, A, L|tz, C, Krdutler, B. Structures of chlorophyll catabolites in bananas (Musa acuminata) reveal a split path of chlorophyll breakdown in a ripening fruit. Chem Eur J 2012;18:10873-85. https://doi.org/10.1002/chem.201201023.10.1002/chem.201201023Search in Google Scholar PubMed PubMed Central

19. Metcalf, RL. A study of the metabolism of chlorophyll in the squash bug Anasa tristis DeGeer. Ann Entomol Soc Am 1945;38:397-402. https://doi.org/10.1093/aesa/38.3.397.10.1093/aesa/38.3.397Search in Google Scholar

20. Neelagund, SE, Hinchigeri, SB. Biochemical characterization of antiviral protein from silk worm Bombyx mori. Recent Res Sci Technol 2011;3:47-53.Search in Google Scholar

21. Vencl, FV, Gsmez, NE, Ploss, K, Boland, W. The chlorophyll catabolite, pheophorbide a, confers predation resistance in a larval tortoise beetle shield defense. J Chem Ecol 2009;35:281-8. https://doi.org/10.1007/s10886-008-9577-1.10.1007/s10886-008-9577-1Search in Google Scholar PubMed PubMed Central

22. Badgaa, A, B|chler, R, Wielsch, N, Walde, M, Heintzmann, R, Pauchet, Y, et al. The green gut: chlorophyll degradation in the gut of Spodoptera littoralis. J Chem Ecol 2015;41:965-74. https://doi.org/10.1007/s10886-015-0636-0.10.1007/s10886-015-0636-0Search in Google Scholar

23. Badgaa, A, Jia, A, Ploss, K, Boland, W. Chlorophyll degradation in the gut of generalist and specialist Lepidopteran caterpillars. J Chem Ecol 2014;40:1232-40. https://doi.org/10.1007/s10886-014-0523-0.10.1007/s10886-014-0523-0Search in Google Scholar

24. Hu, X, Makita, S, Schelbert, S, Sano, S, Ochiai, M, Tsuchiya, T, et al. Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores. Plant Physiol 2015;167:660-70. https://doi.org/10.1104/pp.114.252023.10.1104/pp.114.252023Search in Google Scholar

25. Hvrtensteiner, S. Chlorophyll degradation during senescence. Annu Rev Plant Biol 2006;57:55-77. https://doi.org/10.1146/annurev.arplant.57.032905.105212.10.1146/annurev.arplant.57.032905.105212Search in Google Scholar

26. Hvrtensteiner, S, Krdutler, B. Chlorophyll breakdown in higher plants. Biochim Biophys Acta Bioenerg 2011;1807:977-88. https://doi.org/10.1016/j.bbabio.2010.12.007.10.1016/j.bbabio.2010.12.007Search in Google Scholar

27. Pru-inska, A, Tanner, G, Aubry, S, Anders, I, Moser, S, M|ller, T, et al. Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 2005;139:52-63.10.1104/pp.105.065870Search in Google Scholar

28. Krdutler, B. Breakdown of chlorophyll in higher plants - phyllobilins as abundant, yet hardly visible signs of ripening, senescence, and cell death. Angew Chem Int Ed 2016;55:4882-907. https://doi.org/10.1002/anie.201508928.10.1002/anie.201508928Search in Google Scholar

29. Yoshida, T. Digestion of chlorophyll, and C., in Bombyx. Bull Seric Exp Sta 1955;14:353-426.Search in Google Scholar

30. Kunieda, T, Amano, T, Shioi, Y. Search for chlorophyll degradation enzyme, Mg-dechelatase, from extracts of Chenopodium album with native and artificial substrates. Plant Sci 2005;169:177-83. https://doi.org/10.1016/j.plantsci.2005.03.010.10.1016/j.plantsci.2005.03.010Search in Google Scholar

31. DeRosa, MC, Crutchley, RJ. Photosensitized singlet oxygen and its applications. Coord Chem Rev 2002;233-234:351-71. https://doi.org/10.1016/s0010-8545(02)00034-6.10.1016/S0010-8545(02)00034-6Search in Google Scholar

32. Pandey, RK, Goswami, LN, Chen, Y, Gryshuk, A, Missert, JR, Oseroff, A, et al. Nature: a rich source for developing multifunctional agents. Tumor-imaging and photodynamic therapy. Laser Surg Med 2006;38:445-67. https://doi.org/10.1002/lsm.20352.10.1002/lsm.20352Search in Google Scholar PubMed

33. Yoon, I, Li, JZ, Shim, YK. Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc 2013;46:7-23. https://doi.org/10.5946/ce.2013.46.1.7.10.5946/ce.2013.46.1.7Search in Google Scholar PubMed PubMed Central

34. Matti, KM, Singh, SS, Savanurmath, CJ, Hinchigeri, SB. A unique red fluorescent protein of silkworm bearing two photochromic moieties. Photochem Photobiol Sci 2009;8:1364-72. https://doi.org/10.1039/b904102h.10.1039/b904102hSearch in Google Scholar PubMed

35. Matti, KM, Savanurmath, CJ, Hinchigeri, SB. A promising broad spectrum antimicrobial red fluorescent protein present in silkworm excreta. Biol Pharm Bull 2010;33:1143-7. https://doi.org/10.1248/bpb.33.1143.10.1248/bpb.33.1143Search in Google Scholar PubMed

36. Mukai, J-I, Inouye, J, Akune, S. A red, fluorescent protein from silkworm. Agric Biol Chem 1969;33:125-7. https://doi.org/10.1080/00021369.1969.10859288.10.1080/00021369.1969.10859288Search in Google Scholar

37. Sunagar, SG, Lakkappan, VJ, Ingalhalli, SS, Savanurmath, CJ, Hinchigeri, SB. Characterization of the photochromic pigments in red fluorescent proteins purified from the gut juice of the silkworm Bombyx mori L. Photochem Photobiol 2008;84:1440-4. https://doi.org/10.1111/j.1751-1097.2008.00360.x.10.1111/j.1751-1097.2008.00360.xSearch in Google Scholar PubMed

38. Suresha, GS, Srikar, LN, Anitha, P, Santhala, L, Shankar, MA. Purification and partial characterization of red fluorescent protein from silkworm Bombyx mori. J Indian Biochem Agric Sci Agric 2007;20:63-8.Search in Google Scholar

39. Hossain, DM, Shitomi, Y, Nanjo, Y, Takano, D, Nishiumi, T, Hayakawa, T, et al. Localization of a novel 252-kDa plasma membrane protein that binds Cry1A toxins in the midgut epithelia of Bombyx mori. Appl Entomol Zool 2005;40:125-35. https://doi.org/10.1303/aez.2005.125.10.1303/aez.2005.125Search in Google Scholar

40. Pandian, GN, Ishikawa, T, Togashi, M, Shitomi, Y, Haginoya, K, Yamamoto, S, et al. Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide-binding protein, and the resulting complex has antimicrobial activity. Appl Environ Microbiol 2008;74:1324-31. https://doi.org/10.1128/aem.01901-07.10.1128/AEM.01901-07Search in Google Scholar PubMed PubMed Central

41. Mauchamp, B, Royer, C, Garel, A, Jalabert, A, Da Rocha, M, Grenier, AM, et al. Polycalin (chlorophyllide A binding protein): a novel, very large fluorescent lipocalin from the midgut of the domestic silkworm Bombyx mori L. Insect Biochem Mol Biol 2006;36:623-33. https://doi.org/10.1016/j.ibmb.2006.05.006.10.1016/j.ibmb.2006.05.006Search in Google Scholar PubMed

42. Huang, MY, Huang, WD, Chou, HM, Chen, CC, Chang, YT, Yang, CM. Herbivorous insects alter the chlorophyll metabolism of galls on host plants. J Asia Pac Entomol 2014;17:431-4. https://doi.org/10.1016/j.aspen.2014.04.004.10.1016/j.aspen.2014.04.004Search in Google Scholar

43. Park, YJ, Kim, WS, Ko, SH, Lim, DS, Lee, HJ, Lee, WY, et al. Separation and characterization of chlorophyll degradation products in silkworm Using HPLC-UV-APCI-MS. J Liq Chromatogr Relat Technol 2003;26:3183-97. https://doi.org/10.1081/jlc-120025517.10.1081/JLC-120025517Search in Google Scholar

44. Hvrtensteiner, S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 2009;14:155-62. https://doi.org/10.1016/j.tplants.2009.01.002.10.1016/j.tplants.2009.01.002Search in Google Scholar

45. Vencl, F V, Nogueira-de-Sa, F, Allen, BJ, Windsor, DM, Futuyma, DJ. Dietary specialization influences the efficacy of larval tortoise beetle shield defenses. Oecologia 2005;145:404-14. https://doi.org/10.1007/s00442-005-0138-9.10.1007/s00442-005-0138-9Search in Google Scholar

46. Badgaa, A, Boland, W. Chlorophyll catabolites in the frass of the small tortoiseshell caterpillars (Aglais urticae L.). Mong J Chem 2013;14:46-50. https://doi.org/10.5564/mjc.v14i0.198.10.5564/mjc.v14i0.198Search in Google Scholar

47. Engel, P, Moran, NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 2013;37:699-735. https://doi.org/10.1111/1574-6976.12025.10.1111/1574-6976.12025Search in Google Scholar

48. Yun, JH, Roh, SW, Whon, TW, Jung, MJ, Kim, MS, Park, DS, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 2014;80:5254-64. https://doi.org/10.1128/aem.01226-14.10.1128/AEM.01226-14Search in Google Scholar

49. Chen, B, Teh, BS, Sun, C, Hu, S, Lu, X, Boland, W, et al. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci Rep 2016;6:1-14. https://doi.org/10.1038/srep29505.10.1038/srep29505Search in Google Scholar

50. Ritter, M, Seidel, R, Oetama, VSP, Schulze, D, Muetzlaff, K, Meents, AK, et al. Pyrrolic and dipyrrolic chlorophyll degradation products in plants and herbivores. Chem Eur J 2020;26:6205-17. https://doi.org/10.1002/chem.201905236.10.1002/chem.201905236Search in Google Scholar

51. Doi, M, Shioi, Y, Sasa, T. Purification and characterization of a blue-colored red-fluorescent protein from the silkworm (Bombyx mori L.) larvae. Comp Biochem Physiol Part B Comp Biochem 1986;83:569-73. https://doi.org/10.1016/0305-0491(86)90298-1.10.1016/0305-0491(86)90298-1Search in Google Scholar

52. Angelucci, C, Barrett-Wilt, GA, Hunt, DF, Akhurst, RJ, East, PD, Gordon, KH, et al. Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polycalins expressed in the midgut of Helicoverpa armigera: identification of proteins binding the d-endotoxin, Cry1Ac of Bacillus thuringiensis. Insect Biochem Mol Biol 2008;38:685-96. https://doi.org/10.1016/j.ibmb.2008.03.010.10.1016/j.ibmb.2008.03.010Search in Google Scholar PubMed PubMed Central

53. Campbell, PM, Cao, AT, Hines, ER, East, PD, Gordon, KHJ. Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Insect Biochem Mol Biol 2008;38:950-8. https://doi.org/10.1016/j.ibmb.2008.07.009.10.1016/j.ibmb.2008.07.009Search in Google Scholar PubMed

54. Pandian, GN, Ishikawa, T, Vaijayanthi, T, Hossain, DM, Yamamoto, S, Nishiumi, T, et al. Formation of macromolecule complex with Bacillus thuringiensis Cry1A toxins and chlorophyllide binding 252-kDa lipocalin-like protein locating on Bombyx mori midgut membrane. J Membr Biol 2010;237:125-36. https://doi.org/10.1007/s00232-010-9314-x.10.1007/s00232-010-9314-xSearch in Google Scholar

55. Uchida, Y, Hayashiya, K. Biosynthesis of a red fluorescent protein (RFP) in the digestive juice of the silkworm larvae, Bombyx mori L. (Lepidoptera: bombycidae). Jpn J Appl Entomol Zool 1981;25:94-100.10.1303/jjaez.25.94Search in Google Scholar

56. Flower, DR. The lipocalin protein family: structure and function. Biochem J 1996;318:1-14. https://doi.org/10.1042/bj3180001.10.1042/bj3180001Search in Google Scholar

57. Ganfornina, MD, Gutiirrez, G, Bastiani, M, Sanchez, D. A phylogenetic analysis of the lipocalin protein family. Mol Biol Evol 2000;17:114-26. https://doi.org/10.1093/oxfordjournals.molbev.a026224.10.1093/oxfordjournals.molbev.a026224Search in Google Scholar

58. Larsson, J, Allhorn, M, Ekerstrvm, B. The lipocalin a1-microglobulin binds heme in different species. Arch Biochem Biophys 2004;432:196-204. https://doi.org/10.1016/j.abb.2004.09.021.10.1016/j.abb.2004.09.021Search in Google Scholar

59. Moan, J, Peng, Q. An outline of the hundred-year history of PDT. Anticancer Res 2003;23:3591-600.Search in Google Scholar

60. El-Sayed, MA, Chen, CR. The intersystem crossing process in symmetric tetrachlorobenzene. Chem Phys Lett 1971;10:313-6. https://doi.org/10.1016/0009-2614(71)80296-8.10.1016/0009-2614(71)80296-8Search in Google Scholar

61. Abrahamse, H, Hamblin, MR. New photosensitizers for photodynamic therapy. Biochem J 2016;473:347-64. https://doi.org/10.1042/bj20150942.10.1042/BJ20150942Search in Google Scholar PubMed PubMed Central

62. Palm, DM, Agostini, A, Tenzer, S, Gloeckle, BM, Werwie, M, Carbonera, D, et al. Water-soluble chlorophyll protein (WSCP) stably binds two or four chlorophylls. Biochemistry 2017;56:1726-36. https://doi.org/10.1021/acs.biochem.7b00075.10.1021/acs.biochem.7b00075Search in Google Scholar PubMed

63. Alster, J, Lokstein, H, Dostal, J, Uchida, A, Zigmantas, D. 2D spectroscopy study of water-soluble chlorophyll-binding protein from Lepidium virginicum. J Phys Chem B 2014;118:3524-31. https://doi.org/10.1021/jp411174t.10.1021/jp411174tSearch in Google Scholar PubMed

64. Schmidt, K, Fufezan, C, Krieger-Liszkay, A, Satoh, H, Paulsen, H. Recombinant water-soluble chlorophyll protein from Brassica oleracea Var. Botrys binds various chlorophyll derivatives. Biochemistry 2003;42:7427-33. https://doi.org/10.1021/bi034207r.10.1021/bi034207rSearch in Google Scholar PubMed

65. Bektas, I, Fellenberg, C, Paulsen, H. Water-soluble chlorophyll protein (WSCP) of Arabidopsis is expressed in the gynoecium and developing silique. Planta 2012;236:251-9. https://doi.org/10.1007/s00425-012-1609-y.10.1007/s00425-012-1609-ySearch in Google Scholar

66. Horigome, D, Satoh, H, Itoh, N, Mitsunaga, K, Oonishi, I, Nakagawa, A, et al. Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein. J Biol Chem 2007;282:6525-31. https://doi.org/10.1074/jbc.m609458200.10.1074/jbc.M609458200Search in Google Scholar

67. Agostini, A, Palm, DM, Schmitt, F-J, Albertini, M, Di Valentin, M, Paulsen, H, et al. An unusual role for the phytyl chains in the photoprotection of the chlorophylls bound to Water-Soluble Chlorophyll-binding Proteins. Sci Rep 2017;7:7504. https://doi.org/10.1038/s41598-017-07874-6.10.1038/s41598-017-07874-6Search in Google Scholar

68. Tang, X, Freitak, D, Vogel, H, Albertini, M, Di Valentin, M, Paulsen, H, et al. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PloS One 2012;7:e36978. https://doi.org/10.1371/journal.pone.0036978.10.1371/journal.pone.0036978Search in Google Scholar

69. Ishii, K, Hamamoto, H, Kamimura, M, Sekimizu, K. Activation of the silkworm cytokine by bacterial and fungal cell wall components via a reactive oxygen species-triggered mechanism. J Biol Chem 2008;283:2185-91. https://doi.org/10.1074/jbc.m705480200.10.1074/jbc.M705480200Search in Google Scholar

70. Wang, Y, Jiang, H, Kanost, M R. Biological activity of Manduca sexta paralytic and plasmatocyte spreading peptide and primary structure of its hemolymph precursor. Insect Biochem Mol Biol 1999;29:1075-86. https://doi.org/10.1016/s0965-1748(99)00086-7.10.1016/S0965-1748(99)00086-7Search in Google Scholar

71. Whitten, MM, Ratcliffe, NA. In vitro superoxide activity in the haemolymph of the West Indian leaf cockroach, Blaberus discoidalis. J Insect Physiol 1999;45:667-75. https://doi.org/10.1016/s0022-1910(99)00039-6.10.1016/S0022-1910(99)00039-6Search in Google Scholar

72. Bergin, D, Reeves, EP, Renwick, J, Wientjes, FB, Kavanagh, K. Superoxide production in Galleria mellonella: hemocytes: identification of proteins homologous to the NADPH Oxidase complex of human neutrophils. Infect Immun 2005;73:4161-70. https://doi.org/10.1128/iai.73.7.4161-4170.2005.10.1128/IAI.73.7.4161-4170.2005Search in Google Scholar

73. Forman, HJ, Torres, M. Reactive oxygen species and cell signaling. Am J Respir Crit Care Med 2002;166:S4-8. https://doi.org/10.1164/rccm.2206007.10.1164/rccm.2206007Search in Google Scholar

74. Jay Forman, H, Torres, M. Redox signaling in macrophages. Mol Aspect Med 2001;22:189-216. https://doi.org/10.1016/s0098-2997(01)00010-3.10.1016/S0098-2997(01)00010-3Search in Google Scholar

75. Uzuka, A, Kobayashi, Y, Onuma, R, Hirooka, S, Kanesaki, Y, Yoshikawa, H, et al. Responses of unicellular predators to cope with the phototoxicity of photosynthetic prey. Nat Commun 2019;10:1-17. https://doi.org/10.1038/s41467-019-13568-6.10.1038/s41467-019-13568-6Search in Google Scholar PubMed PubMed Central

76. Brandis, AS, Salomon, Y, Scherz, A. Chlorophyll sensitizers in photodynamic therapy. In: Grimm, B, Porra, RJ, R|diger, WSH, editors. Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Dordrecht: Springer Netherlands; 2006. p. 461-83.10.1007/1-4020-4516-6_32Search in Google Scholar

77. Song, HY, Rho, MC, Lee, SW, Garcia-Saura, MF, Zarzuelo, A, Duarte, J. Isolation of acyl-CoA:cholesterol acyltransferase inhibitor from Persicaria vulgaris. Planta Med 2002;68:845-7. https://doi.org/10.1055/s-2002-34395.10.1055/s-2002-34395Search in Google Scholar PubMed

78. Ponnuvel, KM, Kumar, V, Babu, AM, Datta, RK. Effect of alkalinity and protease in the digestive juice of silkworm, Bombyx mori on BmNPV infection. Ital J Zool 1999;66:121-4. https://doi.org/10.1080/11250009909356246.10.1080/11250009909356246Search in Google Scholar

79. Matti, KM, Savanurmath, CJ, Hinchigeri, SB. SDS-induced Serine Protease activity of an antiviral red fluorescent protein. World Acad Sci Eng Technol 2010;68:1043-8.Search in Google Scholar

80. Nakazawa, H, Tsuneishi, E, Ponnuvel, KM, Furukawa, S, Asaoka, A, Tanaka, H, et al. Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus. Virology 2004;321:154-62. https://doi.org/10.1016/j.virol.2003.12.011.10.1016/j.virol.2003.12.011Search in Google Scholar PubMed

81. Selot, R, Kumar, V, Shukla, S, Chandrakuntal, K, Brahmaraju, M, Dandin, SB, et al. Identification of a soluble NADPH oxidoreductase (BmNOX) with antiviral activities in the gut juice of Bombyx mori. Biosci Biotechnol Biochem 2007;71:200-5. https://doi.org/10.1271/bbb.60450.10.1271/bbb.60450Search in Google Scholar PubMed

82. Manjunatha, GKS, Peter, A, Naika, MBN, Shamprasad, PN, Niranjana, P. Identification of in-vitro red fluorescent protein with antipathogenic activity from the midgut of the silkworm (Bombyx mori L.). Protein Pept Lett 2018;25:302-13. https://doi.org/10.2174/0929866525666180115121853.10.2174/0929866525666180115121853Search in Google Scholar PubMed

83. Raghavendra, R, Neelagund, S. Partial purification and biochemical characterization of antimicrobial and analgesic novel bioactive protein (Substances) from silkworm (Bombyx mori Linn .) fecal matter. Int J Biomed Pharmaceut Sci 2009;3:74-8.Search in Google Scholar

Received: 2020-03-19
Accepted: 2020-08-03
Published Online: 2020-09-04
Published in Print: 2021-01-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/znc-2020-0060/html
Scroll to top button