Skip to main content

Advertisement

Log in

Evaluation of Cell-Penetrating Peptides as Versatile, Effective Absorption Enhancers: Relation to Molecular Weight and Inherent Epithelial Drug Permeability

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The poor permeability of new drug candidates across intestinal epithelial membranes complicates their development in oral form. This study investigated the potential of cell-penetrating peptides (CPPs) to improve the intestinal permeation and absorption of low-permeable low-molecular-weight (low-MW) drugs.

Methods

The in vitro epithelial permeation of six different drugs (metformin, risedronate, zanamivir, methotrexate [MTX], tacrolimus, and vincristine [VCR]) across Caco-2 cell monolayers was examined in the presence and absence of L- or D-penetratin, and the correlation between permeation enhancement efficiency and the properties of tested drugs was analyzed. In addition, a rat closed ileal loop absorption study was conducted to determine the in vivo effects of penetratin.

Results

MTX and VCR efficiently permeated Caco-2 monolayers in the presence of L- and D-penetratin, suggesting that CPPs enhanced the epithelial permeation of drugs with relatively high molecular weight and resultant limited intrinsic permeability. The in vivo rat closed ileal loop absorption study revealed the stimulatory effect of L- and D-penetratin on the intestinal absorption of MTX and VCR.

Conclusions

CPPs are useful as oral absorption enhancers for low-permeable drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  2. Benet LZ. Predicting drug disposition via application of a biopharmaceutics drug disposition classification system. Basic Clin Pharmacol Toxicol. 2010;106(3):162–7.

    Article  CAS  PubMed  Google Scholar 

  3. Matsson P, Doak BC, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev. 2016;101:42–61.

    Article  CAS  PubMed  Google Scholar 

  4. Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26(9):2039–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Estudante M, Morais JG, Soveral G, Benet LZ. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013;65(10):1340–56.

    Article  CAS  PubMed  Google Scholar 

  6. Tamura S, Ohike A, Ibuki R, Amidon GL, Yamashita S. Tacrolimus is a class II low-solubility high-permeability drug: the effect of P-glycoprotein efflux on regional permeability of tacrolimus in rats. J Pharm Sci. 2002;91(3):719–29.

    Article  CAS  PubMed  Google Scholar 

  7. Yokooji T, Murakami T, Yumoto R, Nagai J, Takano M. Role of intestinal efflux transporters in the intestinal absorption of methotrexate in rats. J Pharm Pharmacol. 2007;59(9):1263–70.

    Article  CAS  PubMed  Google Scholar 

  8. Tran CD, Timmins P, Conway BR, Irwin WJ. Investigation of the coordinated functional activities of cytochrome P450 3A4 and P-glycoprotein in limiting the absorption of xenobiotics in Caco-2 cells. J Pharm Sci. 2002;91(1):117–28.

    Article  CAS  PubMed  Google Scholar 

  9. Doak BC, Over B, Giordanetto F, Kihlberg J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol. 2014;21(9):1115–42.

    Article  CAS  PubMed  Google Scholar 

  10. Holmes EH, Devalapally H, Li L, Perdue ML, Ostrander GK. Permeability enhancers dramatically increase zanamivir absolute bioavailability in rats: implications for an orally bioavailable influenza treatment. PLoS One. 2013;8(4):e61853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vives E, Brodin P, Lebleu B. A truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell Nucleus. 1997;272:16010–16017.

  12. Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third Helixof the Antennapedia Homeodornain Translocates through biological membranes. J Biol Chem. 1994;269:10444–50.

    CAS  PubMed  Google Scholar 

  13. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001;276(8):5836–40.

    Article  CAS  PubMed  Google Scholar 

  14. Kamei N, Morishita M, Eda Y, Ida N, Nishio R, Takayama K. Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J Control Release. 2008;132(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  15. Kamei N, Morishita M, Kanayama Y, Hasegawa K, Nishimura M, Hayashinaka E, et al. Molecular imaging analysis of intestinal insulin absorption boosted by cell-penetrating peptides by using positron emission tomography. J Control Release. 2010;146(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  16. Khafagy el S, Morishita M, Kamei N, Eda Y, Ikeno Y, Takayama K. Efficiency of cell-penetrating peptides on the nasal and intestinal absorption of therapeutic peptides and proteins. Int J Pharm 2009;381(1):49–55.

  17. Kamei N, Morishita M, Ehara J, Takayama K. Permeation characteristics of oligoarginine through intestinal epithelium and its usefulness for intestinal peptide drug delivery. J Control Release. 2008;131(2):94–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kamei N, Morishita M, Takayama K. Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides. J Control Release. 2009;136(3):179–86.

    Article  CAS  PubMed  Google Scholar 

  19. Iwase Y, Kamei N, Khafagy el S, Miyamoto M, Takeda-Morishita M. Use of a non-covalent cell-penetrating peptide strategy to enhance the nasal delivery of interferon beta and its PEGylated form. Int J Pharm 2016;510(1):304–310.

  20. Khafagy ES, Kamei N, Fujiwara Y, Okumura H, Yuasa T, Kato M, et al. Systemic and brain delivery of leptin via intranasal coadministration with cell-penetrating peptides and its therapeutic potential for obesity. J Control Release. 2020;319:397–406.

    Article  CAS  PubMed  Google Scholar 

  21. Kamei N, Onuki Y, Takayama K, Takeda-Morishita M. Mechanistic study of the uptake/permeation of cell-penetrating peptides across a caco-2 monolayer and their stimulatory effect on epithelial insulin transport. J Pharm Sci. 2013;102(11):3998–4008.

    Article  CAS  PubMed  Google Scholar 

  22. Kamei N, Aoyama Y, Khafagy el S, Henmi M, Takeda-Morishita M. Effect of different intestinal conditions on the intermolecular interaction between insulin and cell-penetrating peptide penetratin and on its contribution to stimulation of permeation through intestinal epithelium. Eur J Pharm Biopharm 2015;94:42–51.

  23. Kamei N, Yamaoka A, Fukuyama Y, Itokazu R, Takeda-Morishita M. Noncovalent strategy with cell-penetrating peptides to facilitate the brain delivery of insulin through the blood-brain barrier. Biol Pharm Bull. 2018;41(4):546–54.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar PP, Murthy TE, Basaveswara Rao MV. Development, validation of liquid chromatography-tandem mass spectrometry method for simultaneous determination of rosuvastatin and metformin in human plasma and its application to a pharmacokinetic study. J Adv Pharm Technol Res. 2015;6(3):118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. https://sub.osaka-soda.co.jp/HPLC/app/pdf/hlcaa281.pdf. Application Library of Osaka Soda Company.

  26. Lindegardh N, Hanpithakpong W, Kamanikom B, Farrar J, Hien TT, Singhasivanon P, et al. Quantification of the anti-influenza drug zanamivir in plasma using high-throughput HILIC-MS/MS. Bioanalysis. 2011;3(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  27. Veeraraghavan S, Thappali SR, Viswanadha S, Vakkalanka S, Rangaswamy M. Simultaneous quantification of Baricitinib and methotrexate in rat plasma by LC-MS/MS: application to a pharmacokinetic study. Sci Pharm. 2016;84(2):347–59.

    Article  CAS  PubMed  Google Scholar 

  28. Guo P, Wang X, Liu L, Belinsky MG, Kruh GD, Gallo JM. Determination of methotrexate and its major metabolite 7-hydroxymethotrexate in mouse plasma and brain tissue by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2007;43(5):1789–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. https://www.chem.agilent.com/cag/asms/science.asp. Application Library of Agilent Technologies.

  30. Hantrakul S, Klangkaew N, Kunakornsawat S, Tansatit T, Poapolathep A, Kumagai S, et al. Clinical pharmacokinetics and effects of vincristine sulfate in dogs with transmissible venereal tumor (TVT). J Vet Med Sci. 2014;76(12):1549–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brunton LL, Lazo JS, Parker KL. Goodman & Gilman’s the pharmacological basis of therapeutics. 2006(11th ed.):1847.

  32. Mitchell DY, Barr WH, Eusebio RA, Stevens KA, Duke FP, Russell DA, et al. Risedronate pharmacokinetics and intra- and inter-subject variability upon single-dose intravenous and oral administration. Pharm Res. 2001;18(2):166–70.

    Article  CAS  PubMed  Google Scholar 

  33. Cass LM, Brown J, Pickford M, Fayinka S, Newman SP, Johansson CJ, et al. Pharmacoscintigraphic evaluation of lung deposition of inhaled zanamivir in healthy volunteers. Clin Pharmacokinet. 1999;36(Suppl 1):21–31.

    Article  CAS  PubMed  Google Scholar 

  34. Ahern M, Booth J, Loxton A, McCarthy P, Meffin P, Kevat S. Methotrexate kinetics in rheumatoid arthritis: is there an interaction with nonsteroidal antiinflammatory drugs? J Rheumatol. 1988;15(9):1356–60.

    CAS  PubMed  Google Scholar 

  35. Boswell GW, Bekersky I, Fay J, Wingard J, Antin J, Weisdorf D, et al. Tacrolimus pharmacokinetics in BMT patients. Bone Marrow Transplant. 1998;21(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  36. Norris MD, De Graaf D, Haber M, Kavallaris M, Madafiglio J, Gilbert J, et al. Involvement of MDR1 P-glycoprotein in multifactorial resistance to methotrexate. Int J Cancer. 1996;65(5):613–9.

    Article  CAS  PubMed  Google Scholar 

  37. Kamei N, Kawano S, Abe R, Hirano S, Ogino H, Tamiwa H, Takeda-Morishita M. Effects of intestinal luminal contents and the importance of microfold cells on the ability of cell-penetrating peptides to enhance epithelial permeation of insulin.Under Review.

  38. Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. 2004;10(3):310–5.

    Article  CAS  PubMed  Google Scholar 

  39. Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther. 2004;10(6):1011–22.

    Article  CAS  PubMed  Google Scholar 

  40. Nielsen EJ, Yoshida S, Kamei N, Iwamae R, Khafagy el S, Olsen J, Rahbek UL, Pedersen BL, Takayama K, Takeda-Morishita M. In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. J Control Release 2014;189:19–24.

  41. https://www.pmda.go.jp/int-activities/int-harmony/ich/0089.html. Biopharmaceutics Classification System-based Biowaivers.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Authors are grateful to Dr. Keizo Fukushima (Laboratory of Clinical Pharmacokinetics, Kobe Gakuin University) for his assistance in operation of LC-MS/MS. This research was supported in part by the Research Foundation for Pharmaceutical Sciences, JSPS KAKENHI Scientific Research (C) (16 K08211), and a Kobe Gakuin University Research Grant (A).

Author information

Authors and Affiliations

Authors

Contributions

N.K. and M.T.-M. conceived and designed the study. N.K. and M.T.-M. acquired research grants. J.Y., Y.O., S.K., and Y.K. conducted transcellular transport study with Caco-2 cell monolayer. N.K., J.Y., Y. O., S.K., Y.K., and H.T. conducted the quantification of drug concentration by using LC-MS/MS and HPLC-UV. Y. H. and H.T. conducted in situ loop absorption experiments. N.K. prepared the manuscript. All authors analyzed and discussed the results and reviewed the manuscript.

Corresponding author

Correspondence to Mariko Takeda-Morishita.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamei, N., Yamanaka, J., Oda, Y. et al. Evaluation of Cell-Penetrating Peptides as Versatile, Effective Absorption Enhancers: Relation to Molecular Weight and Inherent Epithelial Drug Permeability. Pharm Res 37, 182 (2020). https://doi.org/10.1007/s11095-020-02874-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02874-0

Key words

Navigation