Skip to main content

Advertisement

Log in

A multivariate model of time to conversion from mild cognitive impairment to Alzheimer’s disease

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The present study was aimed at determining which combination of demographic, genetic, cognitive, neurophysiological, and neuroanatomical factors may predict differences in time to progression from mild cognitive impairment (MCI) to Alzheimer’s disease (AD). To this end, a sample of 121 MCIs was followed up during a 5-year period. According to their clinical outcome, MCIs were divided into two subgroups: (i) the “progressive” MCI group (n = 46; mean time to progression 17 ± 9.73 months) and (ii) the “stable” MCI group (n = 75; mean time of follow-up 31.37 ± 14.58 months). Kaplan–Meier survival analyses were applied to explore each variable’s relationship with the progression to AD. Once potential predictors were detected, Cox regression analyses were utilized to calculate a parsimonious model to estimate differences in time to progression. The final model included three variables (in order of relevance): left parahippocampal volume (corrected by intracranial volume, LP_ ICV), delayed recall (DR), and left inferior occipital lobe individual alpha peak frequency (LIOL_IAPF). Those MCIs with LP_ICV volume, DR score, and LIOL_IAPF value lower than the defined cutoff had 6 times, 5.5 times, and 3 times higher risk of progression to AD, respectively. Besides, when the categories of the three variables were “unfavorable” (i.e., values below the cutoff), 100% of cases progressed to AD at the end of follow-up. Our results highlighted the relevance of neurophysiological markers as predictors of conversion (LIOL_IAPF) and the importance of multivariate models that combine markers of different nature to predict time to progression from MCI to dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agrell B, Dehlin O. The clock-drawing test. Age Ageing. 1998;27(3):399–403. https://doi.org/10.1093/ageing/27.3.399.

    Article  Google Scholar 

  2. Ahmed S, Mitchell J, Arnold R, Nestor PJ, Hodges JR. Predicting rapid clinical progression in amnestic mild cognitive impairment. Dement Geriatr Cogn Disord. 2008;25:170–177. https://doi.org/10.1159/000113014

  3. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer Dement. 2011;7(3):270–9. https://doi.org/10.1016/j.jalz.2011.03.008.

    Article  Google Scholar 

  4. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimer Dement. 2016;12(4):459–509 http://www.ncbi.nlm.nih.gov/pubmed/27570871.

    Article  Google Scholar 

  5. Aminoff EM, Kveraga K, Bar M. The role of the parahippocampal cortex in cognition. Trends Cogn Sci. 2013;17(8):379–90. https://doi.org/10.1016/j.tics.2013.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. https://doi.org/10.1067/mcp.2001.113989.

    Article  Google Scholar 

  7. Auer S, Reisberg B. The GDS/FAST staging system. Int Psychogeriatr. 1997;9(Suppl 1):167–71 http://www.ncbi.nlm.nih.gov/pubmed/9447440.

    Article  Google Scholar 

  8. Bai Y, Hu Y, Wu Y, Zhu Y, He Q, Jiang C, et al. A prospective, randomized, single-blinded trial on the effect of early rehabilitation on daily activities and motor function of patients with hemorrhagic stroke. J Clin Neurosci. 2012;19(10):1376–9. https://doi.org/10.1016/j.jocn.2011.10.021.

    Article  PubMed  Google Scholar 

  9. Barabash A, Marcos A, Ancín I, Vázquez-Alvarez B, de Ugarte C, Gil P, et al. APOE, ACT and CHRNA7 genes in the conversion from amnestic mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging. 2009;30(8):1254–64. https://doi.org/10.1016/j.neurobiolaging.2007.11.003.

    Article  CAS  PubMed  Google Scholar 

  10. Belleville S, Fouquet C, Hudon C, Zomahoun HTV, Croteau J. Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimer’s type dementia in older adults: a systematic review and meta-analysis. Neuropsychol Rev. 2017;27(4):328–53. https://doi.org/10.1007/s11065-017-9361-5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Benton, A., & Hamsher, K. (1989). Multilingual aphasia examination (T. U. of I. Department of Neurology and Psychology (ed.); 2nd ed.).

  12. Berendse, H. ., Verbunt, J. P. ., Scheltens, P., van Dijk, B. ., & Jonkman, E. . (2000). Magnetoencephalographic analysis of cortical activity in Alzheimer’s disease: a pilot study. Clin Neurophysiol, 111(4), 604–612. https://doi.org/10.1016/S1388-2457(99)00309-0

  13. Burggren AC, Renner B, Jones M, Donix M, Suthana NA, Martin-Harris L, et al. Thickness in entorhinal and subicular cortex predicts episodic memory decline in mild cognitive impairment. Int J Alzheimers Dis. 2011;2011(956053). https://doi.org/10.4061/2011/956053.

  14. Burgmans S, van Boxtel MPJ, van den Berg KEM, Gronenschild EHBM, Jacobs HIL, Jolles J, et al. The posterior parahippocampal gyrus is preferentially affected in age-related memory decline. Neurobiol Aging. 2011;32(9):1572–8. https://doi.org/10.1016/j.neurobiolaging.2009.09.008.

    Article  CAS  PubMed  Google Scholar 

  15. Caroli A, Prestia A, Galluzzi S, Ferrari C, van der Flier WM, Ossenkoppele R, et al. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): prediction of progression. Neurology. 2015;84(5):508–15. https://doi.org/10.1212/WNL.0000000000001209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chartier-Hariln MC, Parfitt M, Legrain S, Pérez-tur J, Brousseau T, Evans A, et al. Apolipoprotein e, ɛ4 allele as a major risk factor for sporadic early and late-onset forms of alzheimer’s disease: analysis of the 19q13.2 chromosomal region. Hum Mol Genet. 1994;3(4):569–74. https://doi.org/10.1093/hmg/3.4.569.

    Article  Google Scholar 

  17. Chiang AKI, Rennie CJ, Robinson PA, Roberts JA, Rigozzi MK, Whitehouse RW, et al. Automated characterization of multiple alpha peaks in multi-site electroencephalograms. J Neurosci Methods. 2008;168(2):396–411. https://doi.org/10.1016/j.jneumeth.2007.11.001.

    Article  CAS  PubMed  Google Scholar 

  18. Chiang, A. K. I., Rennie, C. J., Robinson, P. A., van Albada, S. J., & Kerr, C. C. (2011). Age trends and sex differences of alpha rhythms including split alpha peaks. Clin Neurophysiol, 122(8), 1505–1517. https://doi.org/10.1016/j.clinph.2011.01.040

  19. Cohen AC. Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics. 1965. https://doi.org/10.1080/00401706.1965.10490300.

  20. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science (New York, NY). 1993;261(5123):921–3.

    Article  CAS  Google Scholar 

  21. Cruchaga C, Del-Aguila JL, Saef B, Black K, Fernandez MV, Budde J, et al. Polygenic risk score of sporadic late-onset Alzheimer’s disease reveals a shared architecture with the familial and early-onset forms. Alzheimer Dement. 2018;14(2):205–14. https://doi.org/10.1016/j.jalz.2017.08.013.

    Article  Google Scholar 

  22. Cuesta P, Garcés P, Castellanos NP, López ME, Aurtenetxe S, Bajo R, et al. Influence of the APOE ε4 allele and mild cognitive impairment diagnosis in the disruption of the MEG resting state functional connectivity in sources space. J Alzheimers Dis. 2015;44(2). https://doi.org/10.3233/JAD-141872.

  23. Cui Y, Liu B, Luo S, Zhen X, Fan M, Liu T, et al. Identification of conversion from mild cognitive impairment to Alzheimer’s disease using multivariate predictors. PLoS One. 2011;6(7):e21896. https://doi.org/10.1371/journal.pone.0021896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cummings JL. Alzheimer’s Disease. N Engl J Med. 2004;351(1):56–67.

    Article  CAS  Google Scholar 

  25. De Simone MS, Perri R, Fadda L, Caltagirone C, Carlesimo GA. Predicting progression to Alzheimer’s disease in subjects with amnestic mild cognitive impairment using performance on recall and recognition tests. J Neurol. 2019;266(1):102–11. https://doi.org/10.1007/s00415-018-9108-0.

    Article  PubMed  Google Scholar 

  26. Delli Pizzi S, Punzi M, Sensi SL. Functional signature of conversion of patients with mild cognitive impairment. Neurobiol Aging. 2019;74:21–37. https://doi.org/10.1016/j.neurobiolaging.2018.10.004.

    Article  PubMed  Google Scholar 

  27. Diana RA, Yonelinas AP, Ranganath C. Medial temporal lobe activity during source retrieval reflects information type, not memory strength. J Cogn Neurosci. 2010;22(8):1808–18. https://doi.org/10.1162/jocn.2009.21335.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Douaud G, Menke RAL, Gass A, Monsch AU, Rao A, Whitcher B, et al. Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer’s disease. J Neurosci. 2013;33(5):2147–55. https://doi.org/10.1523/JNEUROSCI.4437-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Du AT, Schuff N, Kramer JH, Ganzer S, Zhu XP, Jagust WJ, et al. Higher atrophy rate of entorhinal cortex than hippocampus in AD. Neurology. 2004;62(3):422–7. https://doi.org/10.1212/01.WNL.0000106462.72282.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dubois, B., Feldman, H. H., Jacova, C., DeKosky, S. T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., & others. (2007). Research criteria for the diagnosis of {A}lzheimer’s disease: revising the {NINCDS}--{ADRDA} criteria. Lancet Neurol, 6(8), 734–746.

  31. Ebbert MTW, Ridge PG, Wilson AR, Sharp AR, Bailey M, Norton MC, et al. Population-based analysis of Alzheimer’s disease risk alleles implicates genetic interactions. Biol Psychiatry. 2014;75(9):732–7. https://doi.org/10.1016/j.biopsych.2013.07.008.

    Article  CAS  PubMed  Google Scholar 

  32. Echávarri C, Aalten P, Uylings HBM, Jacobs HIL, Visser PJ, Gronenschild EHBM, et al. Atrophy in the parahippocampal gyrus as an early biomarker of alzheimer’s disease. Brain Struct Funct. 2011;215(3–4):265–71. https://doi.org/10.1007/s00429-010-0283-8.

    Article  PubMed  Google Scholar 

  33. Eskildsen SF, Coupé P, Fonov VS, Pruessner JC, Collins DL. Structural imaging biomarkers of Alzheimer’s disease: predicting disease progression. Neurobiol Aging. 2015;36(S1):S23–31. https://doi.org/10.1016/j.neurobiolaging.2014.04.034.

    Article  CAS  PubMed  Google Scholar 

  34. Fenoglio C, Scarpini E, Serpente M, Galimberti D. Role of genetics and epigenetics in the pathogenesis of Alzheimer’s disease and frontotemporal dementia. J Alzheimers Dis. 2018;62(3):913–32. IOS Press. https://doi.org/10.3233/JAD-170702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fernández A, Turrero A, Zuluaga P, Gil P, Maestú F, Campo P, et al. Magnetoencephalographic parietal delta dipole density in mild cognitive impairment. Arch Neurol. 2006;63.

  36. Fernández, A., Turrero, A., Zuluaga, P., Gil-Gregorio, P., del Pozo, F., Maestu, F., & Moratti, S. (2013). MEG delta mapping along the healthy aging-Alzheimer’s disease continuum: diagnostic implications. J Alzheimers Dis, 35(3), 495–507. https://doi.org/10.3233/JAD-121912

  37. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV. Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiol Aging. 2011;32(10):1733–41. https://doi.org/10.1016/j.neurobiolaging.2009.11.008.

    Article  PubMed  Google Scholar 

  38. Garcés, P., Vicente, R., Wibral, M., Pineda-Pardo, J., López, M. E., Aurtenetxe, S., Marcos, A., de Andrés, M. E., Yus, M., Sancho, M., Maestú, F., & Fernández, A. (2013). Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment. Front Aging Neurosci, 5(DEC). https://doi.org/10.3389/fnagi.2013.00100

  39. Garcés P, López-Sanz D, Maestú F, Pereda E. Choice of magnetometers and gradiometers after signal space separation. Sensors (Switzerland). 2017;17:2926. https://doi.org/10.3390/s17122926.

    Article  Google Scholar 

  40. Gomar JJ, Bobes-Bascaran T, Conejero-goldberg C, Davies P, Goldberg TE, Initiative, for the A. D. N. Utility of combninations of biomarkers, cognitive markers, and risk factors to predict convresion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer’s disease neuroimaging initiative. Arch Gen Psychiatry. 2011;68(9):961–9. https://doi.org/10.1007/s10346-005-0027-7.

    Article  PubMed  Google Scholar 

  41. Grimmer T, Wutz C, Drzezga A, Förster S, Förstl H, Ortner M, et al. The usefulness of amyloid imaging in predicting the clinical outcome after two years in subjects with mild cognitive impairment. Curr Alzheimer Res. 2013;10(1):82–5 http://www.ncbi.nlm.nih.gov/pubmed/23036071.

    CAS  PubMed  Google Scholar 

  42. Guerreiro, R., & Hardy, J. (2014). Genetics of alzheimer’s disease. In Neurotherapeutics (Vol. 11, Issue 4, pp. 732–737). Springer New York LLC. https://doi.org/10.1007/s13311-014-0295-9

  43. Hampel H, Teipel SJ, Fuchsberger T, Andreasen N, Wiltfang J, Otto M, et al. Value of CSF beta-amyloid1–42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairment. Mol Psychiatry. 2004;9(7):705–10. https://doi.org/10.1038/sj.mp.4001473.

    Article  CAS  PubMed  Google Scholar 

  44. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93. https://doi.org/10.1038/ng.440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hatashita S, Yamasaki H. Diagnosed mild cognitive impairment due to Alzheimer’s disease with PET biomarkers of beta amyloid and neuronal dysfunction. PLoS One. 2013;8(6):e66877. https://doi.org/10.1371/journal.pone.0066877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hindriks R, van Putten MJAM. Thalamo-cortical mechanisms underlying changes in amplitude and frequency of human alpha oscillations. NeuroImage. 2013;70:150–63. https://doi.org/10.1016/j.neuroimage.2012.12.018.

    Article  PubMed  Google Scholar 

  47. Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990;31(3):545–8 http://www.ncbi.nlm.nih.gov/pubmed/2341813.

    CAS  PubMed  Google Scholar 

  48. Houlden H, Crook R, Backhovens H, Prihar G, Baker M, Hutton M, et al. ApoE genotype is a risk factor in nonpresenilin early-onset Alzheimer’s disease families. Am J Med Genet. 1998;81(1). https://doi.org/10.1002/(SICI)1096-8628(19980207)81:1<117::AID-AJMG19>3.0.CO;2-M.

  49. Hu X, Pickering E, Liu YC, Hall S, Fournier H, Katz E, et al. Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer’s disease. PLoS One. 2011;6(2). https://doi.org/10.1371/journal.pone.0016616.

  50. Huang C, Wahlund L-O, Dierks T, Julin P, Winblad B, Jelic V. Discrimination of Alzheimer’s disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clin Neurophysiol. 2000;111(11):1961–7. https://doi.org/10.1016/S1388-2457(00)00454-5.

    Article  CAS  PubMed  Google Scholar 

  51. Jack CR, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer Dement. 2011;7(3):257–62. https://doi.org/10.1016/j.jalz.2011.03.004.

    Article  Google Scholar 

  52. Jack CR, Wiste HJ, Knopman DS, Vemuri P, Mielke MM, Weigand SD, et al. Rates of β-amyloid accumulation are independent of hippocampal neurodegeneration. Neurology. 2014;82(18):1605–12. https://doi.org/10.1212/WNL.0000000000000386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jelic V, Johansson S-E, Almkvist O, Shigeta M, Julin P, Nordberg A, et al. Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol Aging. 2000;21(4):533–40. https://doi.org/10.1016/S0197-4580(00)00153-6.

    Article  CAS  PubMed  Google Scholar 

  54. Kaplan E, Goodglass H, Weintraub S. The Boston Naming Test: Lea and Febiger; 1983.

  55. Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43–51. https://doi.org/10.1016/j.biopsych.2014.05.006.

    Article  CAS  PubMed  Google Scholar 

  56. Kauppi K, Fan CC, McEvoy LK, Holland D, Tan CH, Chen CH, et al. Combining polygenic hazard score with volumetric MRI and cognitive measures improves prediction of progression from mild cognitive impairment to Alzheimer’s disease. Front Neurosci. 2018;12(APR):260. https://doi.org/10.3389/fnins.2018.00260.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev. 1999;29(2–3):169–95. https://doi.org/10.1016/S0165-0173(98)00056-3.

    Article  CAS  PubMed  Google Scholar 

  58. Knyazeva MG, Barzegaran E, Vildavski VY, Demonet JF. Aging of human alpha rhythm. Neurobiol Aging. 2018;69:261–73. https://doi.org/10.1016/j.neurobiolaging.2018.05.018.

    Article  PubMed  Google Scholar 

  59. Krumm S, Kivisaari SL, Probst A, Monsch AU, Reinhardt J, Ulmer S, et al. Cortical thinning of parahippocampal subregions in very early Alzheimer’s disease. Neurobiol Aging. 2016;38:188–96. https://doi.org/10.1016/j.neurobiolaging.2015.11.001.

    Article  PubMed  Google Scholar 

  60. Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., Boland, A., Vronskaya, M., van der Lee, S. J., Amlie-Wolf, A., Bellenguez, C., Frizatti, A., Chouraki, V., Martin, E. R., Sleegers, K., Badarinarayan, N., Jakobsdottir, J., Hamilton-Nelson, K. L., Moreno-Grau, S., … Pericak-Vance, M. A. (2019). Author correction: genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet, (2019), 51, 3, 414–430, https://doi.org/10.1038/s41588-019-0358-2. In Nature Genetics (Vol. 51, Issue 9, pp. 1423–1424). Nature Publishing Group. 10.1038/s41588-019-0495-7

  61. Kwak YT. Quantitative EEG findings in different stages of Alzheimer’s disease. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society. 2006;23(5):456–461. https://doi.org/10.1097/01.wnp.0000223453.47663.63

  62. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8. https://doi.org/10.1038/ng.2802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology. 2010;75(3):230–8. https://doi.org/10.1212/WNL.0b013e3181e8e8b8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lavy Y, Dwolatzky T, Kaplan Z, Guez J, Todder D. Neurofeedback Improves Memory and Peak Alpha Frequency in Individuals with Mild Cognitive Impairment. Applied Psychophysiology Biofeedback. 2019;44(1):41–49. https://doi.org/10.1007/s10484-018-9418-0

  65. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. The Gerontologist. 1969;9(3):179–86 http://www.ncbi.nlm.nih.gov/pubmed/5349366.

    Article  CAS  Google Scholar 

  66. Leonenko G, Sims R, Shoai M, Frizzati A, Bossù P, Spalletta G, et al. Polygenic risk and hazard scores for Alzheimer’s disease prediction. Ann Clin Transl Neur. 2019;6(3):456–65. https://doi.org/10.1002/acn3.716.

    Article  Google Scholar 

  67. Li, M., Lu, S., Li, J., & Zhong, N. (2010). The role of the parahippocampal cortex in memory encoding and retrieval: an fMRI study. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6334 LNAI, 377–386. https://doi.org/10.1007/978-3-642-15314-3_36

  68. Li S, Okonkwo O, Albert M, Wang M-C. Variation in variables that predict progression from MCI to AD dementia over duration of follow-up. Am J Alzheimers Dis. 2013;2(1):12–28. https://doi.org/10.7726/ajad.2013.1002.

    Article  CAS  Google Scholar 

  69. Li K, Chan W, Doody RS, Quinn J, Luo S. Prediction of conversion to Alzheimer’s disease with longitudinal measures and time-to-event data. J Alzheimers Dis. 2017;58(2):361–71. https://doi.org/10.3233/JAD-161201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, X., Id, X. Y., & Sun, Z. (2020). Alpha rhythm slowing in a modified thalamo-cortico-thalamic model related with Alzheimer’s disease. 1–22. https://doi.org/10.1371/journal.pone.0229950

  71. Liu Y, Mattila J, Ruiz MÁM, Paajanen T, Koikkalainen J, van Gils M, et al. Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted PredictAD tool. PLoS One. 2013;8(2):e55246. https://doi.org/10.1371/journal.pone.0055246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lobo A, Ezquerra J, Gómez Burgada F, Sala JM, Seva Díaz A. Cognocitive mini-test (a simple practical test to detect intellectual changes in medical patients). Actas Luso Esp Neurol Psiquiatr Cienc Afines. 1979;7(3):189–202 http://www.ncbi.nlm.nih.gov/pubmed/474231.

    CAS  PubMed  Google Scholar 

  73. López ME, Bruña R, Aurtenetxe S, Pineda-Pardo JA, Marcos A, Arrazola J, et al. Alpha-band hypersynchronization in progressive mild cognitive impairment: a magnetoencephalography study. J Neurosci. 2014;34(44):14551–9. https://doi.org/10.1523/JNEUROSCI.0964-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. López ME, Turrero A, Cuesta P, López-Sanz D, Bruña R, Marcos A, et al. Searching for primary predictors of conversion from mild cognitive impairment to Alzheimer’s disease: a multivariate follow-up study. J Alzheimers Dis. 2016;52(1). https://doi.org/10.3233/JAD-151034.

  75. López-Sanz D, Bruña R, Garcés P, Camara C, Serrano N, Rodríguez-Rojo IC, et al. Alpha band disruption in the AD-continuum starts in the subjective cognitive decline stage: a MEG study. Sci Rep. 2016;6:37685. https://doi.org/10.1038/srep37685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lozupone, M., Seripa, D., Stella, E., La Montagna, M., Solfrizzi, V., Quaranta, N., Veneziani, F., Cester, A., Sardone, R., Bonfiglio, C., Giannelli, G., Bisceglia, P., Bringiotti, R., Daniele, A., Greco, A., Bellomo, A., Logroscino, G., & Panza, F. (2017). Innovative biomarkers in psychiatric disorders: a major clinical challenge in psychiatry. In Expert Review of Proteomics (Vol. 14, Issue 9, pp. 809–824). Taylor and Francis Ltd. https://doi.org/10.1080/14789450.2017.1375857

  77. Lutz MW, Casanova R, Saldana S, Kuchibhatla M, Plassman BL, Hayden KM. Analysis of pleiotropic genetic effects on cognitive impairment, systemic inflammation, and plasma lipids in the Health and Retirement Study. Neurobiol Aging. 2019;80:173–86. https://doi.org/10.1016/j.neurobiolaging.2018.10.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. Int J Mol Med. 2016;94(7):739–46. Springer Verlag. https://doi.org/10.1007/s00109-016-1427-y.

    Article  CAS  Google Scholar 

  79. Manns JR, Hopkins RO, Reed JM, Kitchener EG, Squire LR. Recognition memory and the human hippocampus. Neuron. 2003;37(1):171–80. https://doi.org/10.1016/S0896-6273(02)01147-9.

    Article  CAS  PubMed  Google Scholar 

  80. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer Dement. 2011;7(3):263–9. https://doi.org/10.1016/j.jalz.2011.03.005.

    Article  Google Scholar 

  81. Mitchell J, Arnold R, Dawson K, Nestor PJ, Hodges JR. Outcome in subgroups of mild cognitive impairment (MCI) is highlypredictable using a simple algorithm. J Neurol. 2009;256:1500–1509. https://doi.org/10.1007/s00415-009-5152-0.

  82. Mitolo M, Stanzani-Maserati M, Capellari S, Testa C, Rucci P, Poda R, et al. Predicting conversion from mild cognitive impairment to Alzheimer’s disease using brain 1 H-MRS and volumetric changes: a two- year retrospective follow-up study. NeuroImage: Clinical. 2019;23. https://doi.org/10.1016/j.nicl.2019.101843.

  83. Modrego PJ. Predictors of conversion to dementia of probable Alzheimer type in patients with mild cognitive impairment. Curr Alzheimer Res. 2006;3(2):161–70 http://www.ncbi.nlm.nih.gov/pubmed/16611017.

    Article  CAS  Google Scholar 

  84. Morris JC, Schindler SE, McCue LM, Moulder KL, Benzinger TLS, Cruchaga C, et al. Assessment of racial disparities in biomarkers for Alzheimer disease. JAMA Neurol. 2019;76(3):264–73. https://doi.org/10.1001/jamaneurol.2018.4249.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nolte G. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys Med Biol. 2003;48(22):3637–52. https://doi.org/10.1088/0031-9155/48/22/002.

    Article  PubMed  Google Scholar 

  86. Norris G, Tate RL. The behavioural assessment of the dysexecutive syndrome (BADS): ecological, concurrent and construct validity. Neuropsychol Rehabil. 2000;10(1):33–45. https://doi.org/10.1080/096020100389282.

    Article  Google Scholar 

  87. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113 http://www.ncbi.nlm.nih.gov/pubmed/5146491.

    Article  CAS  Google Scholar 

  88. Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intel Neurosci. 2011;2011:156869. https://doi.org/10.1155/2011/156869.

    Article  Google Scholar 

  89. Osipova D, Pekkonen E, Ahveninen J. Enhanced magnetic auditory steady-state response in early Alzheimer’s disease. Clin Neurophysiol. 2006;117(9):1990–5. https://doi.org/10.1016/j.clinph.2006.05.034.

    Article  PubMed  Google Scholar 

  90. Paulson HL, Igo I. Genetics of dementia. Semin Neurol. 2011;31(5):449–60. https://doi.org/10.1055/s-0031-1299784.

    Article  PubMed  Google Scholar 

  91. Peña-Casanova J. Programa Integrado de Exploración Neuropsicológica- Test Barcelona. Masson SA: Protocolo; 1990.

    Google Scholar 

  92. Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hänninen T, Laakso MP, et al. Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging. 2004;25(3):303–10. https://doi.org/10.1016/S0197-4580(03)00084-8.

    Article  PubMed  Google Scholar 

  93. Pereira, T., Ferreira, F. L., Cardoso, S., Silva, D., De Mendonça, A., Guerreiro, M., & Madeira, S. C. (2018). Neuropsychological predictors of conversion from mild cognitive impairment to Alzheimer’s disease: a feature selection ensemble combining stability and predictability. BMC Med Inform Decis Mak, 18(1), 1–20. https://doi.org/10.1186/s12911-018-0710-y.

  94. Pfeffer RI, Kurosaki TT, Harrah CH, Chance JM, Filos S. Measurement of functional activities in older adults in the community. J Gerontol. 1982;37(3):323–9 http://www.ncbi.nlm.nih.gov/pubmed/7069156.

    Article  CAS  Google Scholar 

  95. Pimenova AA, Raj T, Goate AM. Untangling genetic risk for Alzheimer’s disease. Biol Psychiatry. 2018;83(4):300–10. Elsevier USA. https://doi.org/10.1016/j.biopsych.2017.05.014.

    Article  CAS  PubMed  Google Scholar 

  96. Poil S-S, De Haan W, van der Flier WM, Mansvelder HD, Scheltens P, Linkenkaer-Hansen K. Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage. Front Aging Neurosci. 2013;5. https://doi.org/10.3389/fnagi.2013.00058.

  97. Pusil S, López ME, Cuesta P, Bruña R, Pereda E, Maestú F. Hypersynchronization in mild cognitive impairment: the ‘X’ model. Brain. 2019:1–15. https://doi.org/10.1093/brain/awz320.

  98. Rajabli F, Feliciano BE, Celis K, Hamilton-Nelson KL, Whitehead PL, Adams LD, et al. Ancestral origin of ApoE ε4 Alzheimer disease risk in Puerto Rican and African American populations. PLoS Genet. 2018;14(12). https://doi.org/10.1371/journal.pgen.1007791.

  99. Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry. 1982;139(9):1136–9 http://www.ncbi.nlm.nih.gov/pubmed/7114305.

    Article  CAS  Google Scholar 

  100. Reitan R. Validity of the Trail Making test as an indicator of organic brain damage. Percept Mot Skills. 1958;8:271–6.

    Article  Google Scholar 

  101. Rosen WG, Terry RD, Fuld PA, Katzman R, Peck A. Pathological verification of ischemic score in differentiation of dementias. Ann Neurol. 1980;7(5):486–8. https://doi.org/10.1002/ana.410070516.

    Article  CAS  PubMed  Google Scholar 

  102. Rossini PM, Del Percio C, Pasqualetti P, Cassetta E, Binetti G, Dal Forno G, et al. Conversion from mild cognitive impairment to Alzheimer’s disease is predicted by sources and coherence of brain electroencephalography rhythms. Neuroscience. 2006;143(3):793–803. https://doi.org/10.1016/j.neuroscience.2006.08.049.

    Article  CAS  PubMed  Google Scholar 

  103. van Rossum IA, Vos SJB, Burns L, Knol DL, Scheltens P, Soininen H, et al. Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology. 2012;79(17):1809–16. https://doi.org/10.1212/WNL.0b013e3182704056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ruiz A, Hernández I, Ronsende-Roca M, González-Pérez A, Rodriguez-Noriega E, Ramírez-Lorca R, et al. Exploratory analysis of seven Alzheimer’s disease genes: disease progression. Neurobiol Aging. 2013;34(4):1310.e1–7. https://doi.org/10.1016/j.neurobiolaging.2012.08.014.

    Article  CAS  Google Scholar 

  105. Samson-Dollfus D, Delapierre G, Do Marcolino C, Blondeau C. Normal and pathological changes in alpha rhythms. Int J Psychophysiol. 1997;26(1–3):395–409. https://doi.org/10.1016/s0167-8760(97)00778-2.

    Article  CAS  PubMed  Google Scholar 

  106. Schmidt C, Wolff M, Weitz M, Bartlau T, Korth C, Zerr I. Rapidly progressive alzheimer disease. Arch Neurol. 2011;68(9):1124–30. https://doi.org/10.1001/archneurol.2011.189.

    Article  PubMed  Google Scholar 

  107. Seripa D, Panza F, Paroni G, D’Onofrio G, Bisceglia P, Gravina C, et al. Role of CLU, PICALM, and TNK1 genotypes in aging with and without Alzheimer’s disease. Mol Neurobiol. 2018;55(5):4333–44. https://doi.org/10.1007/s12035-017-0547-x.

    Article  CAS  PubMed  Google Scholar 

  108. Sharma R, Nadkarni S. Biophysical basis of alpha rhythm disruption in Alzheimer’s disease. BioRxiv. 2018;335471. https://doi.org/10.1101/335471.

  109. Stomrud E, Hansson O, Minthon L, Blennow K, Rosén I, Londos E. Slowing of EEG correlates with CSF biomarkers and reduced cognitive speed in elderly with normal cognition over 4 years. Neurobiol Aging. 2010;31(2):215–23. https://doi.org/10.1016/j.neurobiolaging.2008.03.025.

    Article  CAS  PubMed  Google Scholar 

  110. Stoub TR, Rogalski EJ, Leurgans S, Bennett DA, deToledo-Morrell L. Rate of entorhinal and hippocampal atrophy in incipient and mild AD: relation to memory function. Neurobiol Aging. 2010;31(7):1089–98. https://doi.org/10.1016/j.neurobiolaging.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  111. Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol. 2006;51:1759–68. https://doi.org/10.1088/0031-9155/51/7/008.

    Article  CAS  PubMed  Google Scholar 

  112. Tosto G, Bird TD, Tsuang D, Bennett DA, Boeve BF, Cruchaga C, et al. Polygenic risk scores in familial Alzheimer disease. Neurology. 2017;88(12):1180–6. https://doi.org/10.1212/WNL.0000000000003734.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Tyas SL, Salazar JC, Snowdon DA, Desrosiers MF, Riley KP, Mendiondo MS, et al. Transitions to mild cognitive impairments, dementia, and death: findings from the Nun Study. Am J Epidemiol. 2007;165(11):1231–8. https://doi.org/10.1093/aje/kwm085.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–89. https://doi.org/10.1006/nimg.2001.0978.

    Article  CAS  PubMed  Google Scholar 

  115. Van Hoesen G, Augustinack JC, Dierking J, Redman S, Thangavel R. The parahippocampal gyrus in Alzheimer’s disease: clinical and preclinical neuroanatomical correlates. Ann N Y Acad Sci. 2000;911(1):254–74. https://doi.org/10.1111/j.1749-6632.2000.tb06731.x.

    Article  PubMed  Google Scholar 

  116. Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A, Van Veen BD, Van Drongelen W, et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng. 1997;44(9):867–80. https://doi.org/10.1109/10.623056.

    Article  PubMed  Google Scholar 

  117. Varatharajah Y, Ramanan VK, Iyer R, Vemuri P, Weiner MW, Aisen P, et al. Predicting short-term MCI-to-AD progression using imaging, CSF, genetic factors, cognitive resilience, and demographics. Sci Rep. 2019;9(1). https://doi.org/10.1038/s41598-019-38793-3.

  118. Warrington, E., & James, M. (1991). The visual object and space perception battery. Thames Valley Test Company.

    Google Scholar 

  119. Wechsler, D. (1997). Wechsler Memory Scale-third edition manual.

  120. Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501–18. Nature Publishing Group. https://doi.org/10.1038/s41582-019-0228-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49 http://www.ncbi.nlm.nih.gov/pubmed/7183759.

    Article  Google Scholar 

  122. Zhang D, Shen D. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS One. 2012;7(3). https://doi.org/10.1371/journal.pone.0033182.

  123. Zhou M, Zhang F, Zhao L, Qian J, Dong C. Entorhinal cortex: a good biomarker of mild cognitive impairment and mild Alzheimer’s disease. Rev Neurosci. 2016;27(2):185–95. https://doi.org/10.1515/revneuro-2015-0019.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by two projects (PSI2009-14415-C03-01 and PSI2012-38375-C03-01) and by a post-doctoral fellowship to Pablo Cuesta (IJC2018-038404-I) from the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia López.

Ethics declarations

The Hospital Universitario San Carlos Ethics Committee (Madrid) approved the study, and all participants or their caregivers signed a written informed consent prior to participation.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, M.E., Turrero, A., Cuesta, P. et al. A multivariate model of time to conversion from mild cognitive impairment to Alzheimer’s disease. GeroScience 42, 1715–1732 (2020). https://doi.org/10.1007/s11357-020-00260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00260-7

Keywords

Navigation