Skip to main content
Log in

On Lemke processibility of LCP formulations for solving discounted switching control stochastic games

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Schultz (J Optim Theory Appl 73(1):89–99, 1992) formulated 2-person, zero-sum, discounted switching control stochastic games as a linear complementarity problem (LCP) and discussed computational results. It remained open to prove or disprove Lemke-processibility of this LCP. We settle this question by providing a counter example to show that Lemke’s algorithm does not always successfully process this LCP.We propose a new LCP formulation with the aim of making the underlying matrix belong to the classes R\(_{0}\) and E\(_{0}\), which would imply Lemke processibility. While the underlying matrix in the new formulation is not \(E_0\), we show that it is an R\(_{0}\)-matrix. Successful processing of Lemke’s algorithm depends on the choice of the initial vector d. Because of the special structure of the LCP in our context, we may, in fact, be able to find a suitable d such that our LCPs are processible by Lemke’s algorithm. We leave this open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cottle, R. W., & Dantzig, G. (1968). Complementary pivot theory of mathematical programming. Linear Algebra and Applications, 1, 103–125.

    Article  Google Scholar 

  • Cottle, R. W., Pang, J. S., & Stone, R. E. (1992). The linear complementarity problem. New York: Academic Press.

    Google Scholar 

  • Filar, J. (1981). Orderfield property of stochastic games when the player who controls the transition changes from state to state. Journal of Optimization Theory and Applications, 34, 505–517.

    Article  Google Scholar 

  • Filar, J., Schultz, T., Thijsman, D., & Vrieze, O. J. (1991). Nonlinear programming and stationary equilibria in stochastic games. Mathematical Programming, 50, 227–237.

    Article  Google Scholar 

  • Garcia, C. B. (1973). Some classes of matrices in linear complementarity theory. Mathematical Programming, 5, 299–310.

    Article  Google Scholar 

  • Lemke, C. (1965). Bimatrix equilibrium points and mathematical programming. Management Science, 11, 681–689.

    Article  Google Scholar 

  • Mohan, S. R., Neogy, S. K., & Sridhar, R. (1996). The general linear complementarity problem revisited. Mathematical Programming, 74, 197–218.

    Google Scholar 

  • Mohan, S. R., Neogy, S. K., & Parthasarathy, T. (2001). Pivoting algorithms for some classes of stochastic games: A survey. International Game Theory Review, 3(2 & 3), 253–281.

    Article  Google Scholar 

  • Murty, K. G. (1997). Linear complementarity, linear and nonlinear programming. In F.-T. Yu (Ed.), Internet Edition. http://www-personal.umich.edu/~murty/books/linear_complementarity_webbook/kat0.pdf (First published in 1988 by Heldermann Verlag, Berlin, and out of print since 1994).

  • Nowak, A. S., & Raghavan, T. E. S. (1993). A finite step algorithm via a bimatrix game to a single controller non-zero sum stochastic game. Mathematical Programming, 59, 249–259.

    Article  Google Scholar 

  • Parthasarathy, T., & Raghavan, T. E. S. (1981). An orderfield property for stochastic games when one player controls transition probabilities. Journal of Optimization Theory and Applications, 33(3), 375–392.

    Article  Google Scholar 

  • Parthasarathy, T., Tijs, S. H., & Vrieze, O. J. (1984). Stochastic games with state independent transitions and separable rewards. In G. Hammer & D. Pallaschke (Eds.), Selected topics in operations research and mathematical economics (pp. 262–271)., Lecture notes in economics and mathematical systems Berlin: Springer.

    Chapter  Google Scholar 

  • Raghavan, T. E. S. (2003). Chapter 15: Finite-step algorithms for single controller and perfect information stochastic games. In A. Neyman & S. Sorin (Eds.), Stochastic games and applications., NATO science series: C New York: Kluwer Academic Publishers Group.

    Google Scholar 

  • Raghavan, T. E. S., & Syed, Z. (2002). Computing stationary nash equilibria of undiscounted single-controller stochastic games. Mathematics of Operations Research, 27(2), 384–400.

    Article  Google Scholar 

  • Schultz, T. A. (1992). Linear complementarity and discounted switching controller stochastic games. Journal of Optimization Theory and Applications, 73(1), 89–99.

    Article  Google Scholar 

  • Shapley, L. (1953). Stochastic games. Proceedings of the National Academy of Sciences, 39, 1095–1100.

    Article  Google Scholar 

  • Sobel, M. J. (1981). Myopic solutions of markov decision processes and stochastic games. Operations Research, 29, 995–1009.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Parthasarathy, Chennai Mathematical Institute, and A. K. Das, Indian Statistical Institute, Kolkata, for useful discussions. The authors would also like to thank the anonymous referees for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Krishnamurthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this appendix, we describe our reformulation of Schultz’s LCP formulation.

\(w - Mz = q = -c\) where \(M = \left[ \begin{array}{cc} R &{} B \\ A &{} 0 \\ \end{array}\right] \), where

$$\begin{aligned} R= & {} \left[ \begin{array}{cccccccc} &{} &{} &{} &{} -R(1) &{} 0_{m_{1}\times n_{2}} &{} \cdots &{} 0_{m_{1}\times n_{N}} \\ \\ &{} 0_{m\times n} &{} &{} &{} 0_{m_{2}\times n_{1}} &{} -R(2) &{} \cdots &{} 0_{m_{2}\times n_{N}} \\ &{} &{} &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ &{} &{} &{} &{} 0_{m_{N}\times n_{1}} &{} 0_{m_{N}\times n_{2}} &{} \cdots &{} -R(N) \\ \\ R^t(1) &{} 0_{n_{1}\times m_{2}} &{} \cdots &{} 0_{n_{1}\times m_{N}} &{} &{} &{} &{} \\ \\ 0_{n_{2}\times m_{1}} &{} R^t(2) &{} \cdots &{} 0_{n_{2}\times m_{N}} &{} &{} 0_{n\times m} &{} &{} \\ \vdots &{} \vdots &{} &{} \vdots &{} &{} &{} &{} \\ 0_{n_{N}\times m_{1}} &{} 0_{n_{N}\times m_{2}} &{} \cdots &{} R^t(N) &{} &{} &{} &{} \end{array}\right] \\ B= & {} \left[ \begin{array}{cccc} (B_{1}-B_{2}) &{} (B_{2}-B_{1}) &{} B_{3} &{} -B_{3} \\ \end{array} \right] where\\ B_{1}= & {} \left[ \begin{array}{cccccccc} e_{m_{1}} &{} 0_{m_{1}} &{} 0_{m_{1}} &{} \cdots &{} 0_{m_{1}} &{} 0_{m_{1}} &{} \cdots &{} 0_{m_{1}} \\ \\ 0_{m_{1}} &{} e_{m_{2}} &{} 0_{m_{2}} &{} \cdots &{} 0_{m_{2}} &{} 0_{m_{2}} &{} \cdots &{} 0_{m_{2}} \\ \vdots &{} \vdots &{} \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 0_{m_{N_{1}}} &{} 0_{m_{N_{1}}} &{} 0_{m_{N_{1}}} &{} \cdots &{} e_{m_{N_{1}}} &{} 0_{m_{N_{1}}} &{} \cdots &{} 0_{m_{N_{1}}} \\ \\ 0_{m_{P_{2}}} &{} 0_{m_{P_{2}}} &{} 0_{m_{P_{2}}} &{} \cdots &{} 0_{m_{P_{2}}} &{} 0_{m_{P_{2}}} &{} \cdots &{} 0_{m_{P_{2}}} \\ \\ 0_{n_{P_{1}}} &{} 0_{n_{P_{1}}} &{} 0_{n_{P_{1}}} &{} \cdots &{} 0_{n_{P_{1}}} &{} 0_{n_{P_{1}}} &{} \cdots &{} 0_{n_{P_{1}}} \\ \\ 0_{n_{N_{1}+1}} &{} 0_{n_{N_{1}+1}} &{} 0_{n_{N_{1}+1}} &{} \cdots &{} 0_{n_{N_{1}+1}} &{} -e_{n_{N_{1}+1}} &{} \cdots &{} 0_{n_{N_{1}+1}} \\ \vdots &{} \vdots &{} \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 0_{n_{N}} &{} 0_{n_{N}} &{} 0_{n_{N}} &{} \cdots &{} 0_{n_{N}} &{} 0_{n_{N}} &{} \cdots &{} -e_{n_{N}} \\ \end{array} \right] \end{aligned}$$

where \({m_{P_{2}}}\) is the number of actions for player 1 in player 2 controlled states. That is, \({m_{P_{2}}} = \sum _{s_{2} \in S_{2}}m_{s_{2}}\). Similarly, \({n_{P_{1}}}\) is the number of actions for player 2 in player 1 controlled states. That is, \({n_{P_{1}}} = \sum _{s_{1} \in S_{1}}n_{s_{1}}\).

$$\begin{aligned} B_{2}= & {} \left[ \begin{array}{cccccc} \beta Q_{1}(1,1) &{} \cdots &{} \beta Q_{1}(1,N_{1}) &{} \beta Q_{1}(1,N_{1}+1) &{} \cdots &{} \beta Q_{1}(1,N) \\ \\ \beta Q_{1}(2,1) &{} \cdots &{} \beta Q_{1}(2,N_{1}) &{} \beta Q_{1}(2,N_{1}+1) &{} \cdots &{} \beta Q_{1}(2,N) \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ \beta Q_{1}(N_{1},1) &{} \cdots &{} \beta Q_{1}(N_{1},N_{1}) &{} \beta Q_{1}(N_{1},N_{1}+1) &{} \cdots &{} \beta Q_{1}(N_{1},N) \\ \\ 0_{m_{N_{1}+1}} &{} \cdots &{} 0_{m_{N_{1}+1}} &{} -e_{m_{N_{1}+1}} &{} \cdots &{} 0_{m_{N_{1}+1}} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 0_{m_{N}} &{} \cdots &{} 0_{m_{N}} &{} 0_{m_{N}} &{} \cdots &{} -e_{m_{N}}\\ \\ e_{n_{1}} &{} \cdots &{} 0_{n_{1}} &{} 0_{n_{1}} &{} \cdots &{} 0_{n_{1}} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 0_{n_{N_{1}}} &{} \cdots &{} e_{n_{N_{1}}} &{} 0_{n_{N_{1}}} &{} \cdots &{} 0_{n_{N_{1}}} \\ \\ -\beta Q_{2}(N_{1}+1,1) &{} \cdots &{} -\beta Q_{2}(N_{1}+1,N_{1}) &{} -\beta Q_{2}(N_{1}+1,N_{1}+1) &{} \cdots &{} -\beta Q_{2}(N_{1}+1,N) \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ -\beta Q_{2}(N,1) &{} \cdots &{} -\beta Q_{2}(N,N_{1}) &{} -\beta Q_{2}(N,N_{1}+1) &{} \cdots &{} -\beta Q_{2}(N,N) \\ \end{array} \right] \\ B_{3}= & {} \left[ \begin{array}{cccccc} 0_{m} &{} \cdots &{} 0_{m} &{} 0_{m} &{} \cdots &{} 0_{m} \\ \\ 0_{m_{N_{1}+1}} &{} \cdots &{} 0_{m_{N_{1}+1}} &{} -e_{m_{N_{1}+1}} &{} \cdots &{} 0_{m_{N_{1}+1}} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 0_{m_{N}} &{} \cdots &{} 0_{m_{N}} &{} 0_{m_{N}} &{} \cdots &{} -e_{m_{N}}\\ \\ e_{n_{1}} &{} \cdots &{} 0_{n_{1}} &{} 0_{n_{1}} &{} \cdots &{} 0_{n_{1}} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 0_{n_{N_{1}}} &{} \cdots &{} e_{n_{N_{1}}} &{} 0_{n_{N_{1}}} &{} \cdots &{} 0_{n_{N_{1}}} \\ \\ 0_{n} &{} \cdots &{} 0_{n} &{} 0_{n} &{} \cdots &{} 0_{n} \\ \\ \end{array} \right] \\ A= & {} \left[ \begin{array}{cccccccccccc} -e^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} 0^t_{m_{N_{1}+1}} &{} \cdots &{} 0^t_{m_{N}} &{} e^t_{n_{1}} &{} \cdots &{} 0^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} 0^t_{n_{N}}\\ \\ e^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} 0^t_{m_{N_{1}+1}} &{} \cdots &{} 0^t_{m_{N}} &{} -e^t_{n_{1}} &{} \cdots &{} 0^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} 0^t_{n_{N}} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 0^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} 0^t_{m_{N_{1}+1}} &{} \cdots &{} -e^t_{m_{N}} &{} 0^t_{n_{1}} &{} \cdots &{} 0^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} e^t_{n_{N}}\\ \\ 0^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} 0^t_{m_{N_{1}+1}} &{} \cdots &{} e^t_{m_{N}} &{} 0^t_{n_{1}} &{} \cdots &{} 0^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} -e^t_{n_{N}} \\ \\ 0^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} -e^t_{m_{N_{1}+1}} &{} \cdots &{} 0^t_{m_{N}} &{} 0^t_{n_{1}} &{} \cdots &{} 0^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} 0^t_{n_{N}}\\ \\ 0^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} e^t_{m_{N_{1}+1}} &{} \cdots &{} 0^t_{m_{N}} &{} 0^t_{n_{1}} &{} \cdots &{} 0^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} 0^t_{n_{N}} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 0^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} 0^t_{m_{N_{1}+1}} &{} \cdots &{} -e^t_{m_{N}} &{} 0^t_{n_{1}} &{} \cdots &{} 0^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} 0^t_{n_{N}} \\ \\ 0^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} 0^t_{m_{N_{1}+1}} &{} \cdots &{} e^t_{m_{N}} &{} 0^t_{n_{1}} &{} \cdots &{} 0^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} 0^t_{n_{N}} \\ \\ 0^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} 0^t_{m_{N_{1}+1}} &{} \cdots &{} 0^t_{m_{N}} &{} e^t_{n_{1}} &{} \cdots &{} 0^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} 0^t_{n_{N}}\\ \\ 0^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} 0^t_{m_{N_{1}+1}} &{} \cdots &{} 0^t_{m_{N}} &{} -e^t_{n_{1}} &{} \cdots &{} 0^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} 0^t_{n_{N}} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 0^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} 0^t_{m_{N_{1}+1}} &{} \cdots &{} 0^t_{m_{N}} &{} 0^t_{n_{1}} &{} \cdots &{} e^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} 0^t_{n_{N}} \\ \\ 0^t_{m_{1}} &{} \cdots &{} 0^t_{m_{N_{1}}} &{} 0^t_{m_{N_{1}+1}} &{} \cdots &{} 0^t_{m_{N}} &{} 0^t_{n_{1}} &{} \cdots &{} -e^t_{n_{N_{1}}} &{} 0^t_{n_{N_{1}+1}} &{} \cdots &{} 0^t_{n_{N}} \\ \end{array} \right] \\ c= & {} \left[ \begin{array}{c} 0_{2N+m+n} \\ \\ -e^*_{2N_{2}} \\ \\ e^*_{2N_{1}} \\ \end{array} \right] \end{aligned}$$

where \(e^*_{2k}\) is the 2k-dimensional column vector of alternating 1’s and \(-1\)’s, starting with 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, N., Neogy, S.K. On Lemke processibility of LCP formulations for solving discounted switching control stochastic games. Ann Oper Res 295, 633–644 (2020). https://doi.org/10.1007/s10479-020-03750-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03750-1

Keywords

Navigation