Skip to main content
Log in

Vector-valued q-variational inequalities for averaging operators and the Hilbert transform

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Recently, the authors have established \(L^p\)-boundedness of vector-valued q-variational inequalities for averaging operators which take values in the Banach space satisfying the martingale cotype q property in Hong and Ma (Math Z 286(1–2):89–120, 2017). In this paper, we prove that the martingale cotype q property is also necessary for the vector-valued q-variational inequalities, which was a question left open in the previous paper. Moreover, we also prove that the UMD property and the martingale cotype q property can be characterized in terms of vector valued q-variational inequalities for the Hilbert transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain, J.: Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 21(2), 163–168 (1983)

    Article  MathSciNet  Google Scholar 

  2. Bourgain, J.: Vector-Valued Singular Integrals and the \(H^1\)-BMO Duality. Probability Theory and Harmonic Analysis. Textbooks Pure and Applied Mathematics, pp. 1–19. Dekker, New York (1986)

    Google Scholar 

  3. Bourgain, J.: Pointwise ergodic theorems for arithmetic sets. Publ. Math. IHES 69, 5–41 (1989)

    Article  MathSciNet  Google Scholar 

  4. Burkholder, D.L.: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, III., 1981), pp. 270–286. Wadsworth Math. Ser, Wadsworth, Belmont, CA (1981)

  5. Campbell, J.T., Jones, R.L., Reinhold, K., Wierdl, M.: Oscillation and variation for the Hilbert transform. Duke Math. J. 105(1), 59–83 (2000)

    Article  MathSciNet  Google Scholar 

  6. Campbell, J.T., Jones, R.L., Reinhold, K., Wierdl, M.: Oscillation and variation for singular integrals in higher dimensions. Trans. Am. Math. Soc. 355(5), 2115–2137 (2003)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y., Ding, Y., Hong, G., Liu, H.: Weighted jump and variational inequalities for rough operators. J. Funct. Anal. 274(8), 2446–2475 (2018)

    Article  MathSciNet  Google Scholar 

  8. Ding, Y., Hong, G., Liu, H.: Jump and variational inequalities for rough operators. J. Fourier Anal. Appl. 23(3), 679–711 (2017)

    Article  MathSciNet  Google Scholar 

  9. Gillespie, A.T., Torrea, J.L.: Dimension free estimates for the oscillation of Riesz transforms. Isreal J. Math. 141, 125–144 (2004)

    Article  MathSciNet  Google Scholar 

  10. Hong, G., Ma, T.: Vector valued \(q\)-variation for ergodic averages and analytic semigroups. J. Math. Anal. Appl. 437(2), 1084–1100 (2016)

    Article  MathSciNet  Google Scholar 

  11. Hong, G., Ma, T.: Vector valued \(q\)-variation for differential operators and semigroups I. Math. Z. 286(1–2), 89–120 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hytönen, T.P.: Littlewood-Paley-Stein theory for semigroups in UMD spaces. Rev. Mat. Iberoam. 23(3), 973–1009 (2007)

    Article  MathSciNet  Google Scholar 

  13. Hytönen, T.P., Lacey, M.T., Pérez, C.: Sharp weighted bounds for the \(q\)-variation of singular integrals. Bull. Lond. Math. Soc. 45(3), 529–540 (2013)

    Article  MathSciNet  Google Scholar 

  14. Hytönen, T.P., Lacey, M.T., Parissis, I.: A variation norm Carleson theorem for vector-valued Walsh-Fourier series. Rev. Mat. Iberoam. 30(3), 979–1014 (2014)

    Article  MathSciNet  Google Scholar 

  15. Hytönen, T.P., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces, Martingales and Littlewood–Paley Theory, vol. I. Springer, Cham (2016)

    Book  Google Scholar 

  16. Jones, R.L., Kaufman, R., Rosenblatt, J.M., Wierdl, M.: Oscillation in ergodic theory. Ergodic Theory Dyn. Syst. 18(4), 889–935 (1998)

    Article  MathSciNet  Google Scholar 

  17. Jones, R.L., Rosenblatt, J.M., Wierdl, M.: Oscillation in ergodic theory: higher dimensional results. Isreal J. Math. 135, 1–27 (2003)

    Article  MathSciNet  Google Scholar 

  18. Jones, R.L., Kaufman, R., Rosenblatt, J.M., Wierdl, M.: Oscillation and variation for singular integrals in higher dimensions. Trans. Am. Math. Soc. 355(5), 2115–2137 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Krause, B., Zorin-Kranich, P.: Weighted and vector-valued variational estimates for ergodic averages. Ergodic Theory Dyn. Syst. 38(1), 244–256 (2018)

    Article  MathSciNet  Google Scholar 

  20. Le Merdy, C., Xu, Q.: Strong \(q\)-variation inequalities for analytic semigroups. Ann. Inst. Fourier 62(6), 2069–2097 (2012)

    Article  MathSciNet  Google Scholar 

  21. Lépingle, D.: La variation d’ordre \(p\) des semi-martingales. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 36(4), 295–316 (1976)

    Article  MathSciNet  Google Scholar 

  22. Ma, T., Torrea, J.L., Xu, Q.: Weighted variation inequalities for differential operators and singular integrals. J. Funct. Anal. 268(2), 376–416 (2015)

    Article  MathSciNet  Google Scholar 

  23. Ma, T., Torrea, J.L., Xu, Q.: Weighted variation inequalities for differential operators and singular integrals in higher dimensions. Sci. China Math. 60(8), 1419–1442 (2017)

    Article  MathSciNet  Google Scholar 

  24. Martínez, T., Torrea, J.L., Xu, Q.: Vector-valued Littlewood–Paley–Stein theory for semigroups. Adv. Math. 203(2), 430–475 (2006)

    Article  MathSciNet  Google Scholar 

  25. Pisier, G.: Martingales with values in uniformly convex spaces. Isreal J. Math. 20(3–4), 326–350 (1975)

    Article  MathSciNet  Google Scholar 

  26. Pisier, G., Xu, Q.: The strong \(p\)-variation of Martingales and orthogonal series. Probab. Theory Related fields 77(4), 497–514 (1988)

    Article  MathSciNet  Google Scholar 

  27. Xu, Q.: Littlewood-Paley theory for functions with values in uniformly convex spaces. J. Reine Angew. Math. 504, 195–226 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Guixiang Hong is partially supported by the NSF of China (Grant Nos. 11601396, 11501169, 11431011). Tao Ma is supported by NSF of China (Nos. 11671308, 11431011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, G., Liu, W. & Ma, T. Vector-valued q-variational inequalities for averaging operators and the Hilbert transform. Arch. Math. 115, 423–433 (2020). https://doi.org/10.1007/s00013-020-01472-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-020-01472-1

Keywords

Mathematics Subject Classification

Navigation