Skip to main content
Log in

A MODEL OF HYDROGEN BOND FORMATION BETWEEN THE MOLECULES IN VAPOR AND LIQUID

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A model for the interaction between neutral molecules in amorphous isotropic environment is considered. The intermolecular interaction energy contains three independent groups of quantities describing non-polar forces, polar forces, and hydrogen bonds. Respectively, each of the forces is represented by its own molecular descriptor: generalized charge, dipole moment, and two numbers showing the ability of the molecule to be the donor or the acceptor of the H-bond. The H-bond contribution to the total energy of intermolecular interaction is described as a product of some quantum-mechanical threshold value and the probability of correct arrangement of interacting molecules. The accuracy of the model is verified by applying it to the estimations of the energies of dimers composed of water, alcohol, and carbon acid molecules. The accuracy and convenience of the model are evidently manifested in a priori calculations of the vaporization heat of water, alcohols, and carbon acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. L. Pauling. Nature, 1948, 161, 707.

  2. N. D. Sokolov. Usp. Fiz. Nauk, 1955, 57, 205.

  3. P. Hobza. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2004, 100, 3.

  4. M. H. Abraham. J. Phys. Org. Chem., 1993, 6, 660

  5. B. G. Oliveira and M. L. A. A. Vasconcellos. J. Mol. Struct.: THEOCHEM, 2006, 774, 83.

  6. J. J. Dannenberg, L. Haskamp, and A. Masunov. J. Phys. Chem. A, 1999, 103, 7083.

  7. A. M. Dolgonosov. Russ. J. Inorg. Chem., 2000, 45, 897.

  8. A. M. Dolgonosov. Rus. J. Phys. Chem., 2000, 74, S324.

  9. A. M. Dolgonosov. Russ. J. Phys. Chem. A, 2008, 82, 2079.

  10. A. M. Dolgonosov. Model′ Elektronnogo Gaza i Teoriya Obobschennykh Zaryadov dlya Opisaniya Mezhatomnykh Vzaimodeistviy i Adsorbtsii (Electron Gas Model and Theory of Generalized Charges for Description of Interatomic Interactions) [in Russian]. LIBROKOM: Moscow, 2009.

  11. A. M. Dolgonosov. Russ. J. Phys. Chem. A, 2001, 75, 1659.

  12. A. M. Dolgonosov. Russ. J. Phys. Chem. A, 2002, 76, 993.

  13. A. M. Dolgonosov. Russ. J. Phys. Chem. A, 2002, 76, 2015.

  14. A. M. Dolgonosov. Russ. J. Phys. Chem. A, 2003, 77, 764.

  15. A.M. Dolgonosov. Nespetsificheskaya Selektivnost′ v Probleme Modelirovaniya Vysokoeffektivnoy Khromatografii (Nonspecific Selectivity in the Problem of Modeling of High-Performance Chromatography) [in Russian]. KRASAND: Moscow, 2012.

  16. A. M. Dolgonosov. Russ. Chem. Bull., 2016, 65, 952.

  17. A. M. Dolgonosov, Russ. J. Inorg. Chem., 2015, 60, 194.

  18. A. M. Dolgonosov, Russ. J. Inorg. Chem., 2017, 62, 344.

  19. A. M. Dolgonosov, Russ. J. Inorg. Chem., 2019, 64, 488.

  20. A. I. Pertsin and A. I. Kitaigorodsky. The Atom-Atom Potential Method in the Physics and Chemistry of Organic Molecular Solids. Springer Verlag: Berlin, 1986.

  21. I. G. Kaplan. Intermolecular Interactions: Physical Picture, Computational Methods, and Model Potentials. Wiley, 2006.

  22. N. N. Avgul′, A. V. Kiselev, and D. P. Poshkus, Adsorbtsiya Gazov i Parov na Odnorodnykh Poverkhnostyakh (Adsorption of Gases and Vapors on Homogeneous Surfaces) [in Russian]. Khimiya: Moscow, 1975.

  23. A. M. Dolgonosov. J. Struct. Chem., 2019, 60, 1693.

  24. Theory of the Inhomogeneous Electron Gas / Eds. S. Lundqvist and N. H. March. Plenum Press: New York, 1983.

  25. A. M. Dolgonosov. Sorbtsionnye Khromatogr. Protsessy, 2015, 15, 312.

  26. L. A. Curtiss, D. J. Frurip, and M. Blander. J. Chem. Phys., 1979, 71, 2703.

  27. R. A. Provencal, R. N. Casaes, K. Roth, J. B. Paul, C. N. Chapo, R. J. Saykally, G. S. Tschumper, and H. F. Schaefer. J. Phys. Chem. A, 2000, 104, 1423.

  28. A. D. H. Claguet and H. J. Bernstein. Spectrochim. Acta, 1969, 25A, 593.

  29. F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm. J. Chem. Phys., 2012, 136, 151101.

  30. CRC Handbook of Chemistry and Physics / Ed. D. R. Lide. CRC Press: Boca Raton, FL, 2005. http://www.hbcpnetbase.com.

Download references

Funding

The reported study was funded by RFBR, project number 18-03-00382а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Dolgonosov.

Ethics declarations

The author declares that he has no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgonosov, A.M. A MODEL OF HYDROGEN BOND FORMATION BETWEEN THE MOLECULES IN VAPOR AND LIQUID. J Struct Chem 61, 1045–1058 (2020). https://doi.org/10.1134/S0022476620070069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620070069

Keywords

Navigation