Skip to main content
Log in

Perturbed rigid body motions of an elastic rectangle

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Plane and anti-plane dynamic problems for an elastic rectangle loaded along its sides are considered. Low-frequency perturbations to rigid body translations are calculated. The derivation involves the solutions of non-homogeneous boundary value problems for harmonic and bi-harmonic equations. The explicit solution for the harmonic problem for transverse anti-plane translation is expressed through Fourier series. The bi-harmonic problem corresponding to the longitudinal in-plane translation is studied in greater detail for an elongated rectangle, which also may be treated using the elementary theory for plate extension. The derived perturbations incorporate the variations of displacements and stresses over the interior of the rectangle, including the case of self-equilibrated loading. The latter is obviously outside the range of validity of the classical rigid body framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rao, A.: Dynamics of Particles and Rigid Bodies: A Systematic Approach. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  2. Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2079), 855–880 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47(4), 610–617 (2009)

    Article  Google Scholar 

  4. Lee, S.H., Park, C.M., Seo, Y.M., Wang, Z.G., Kim, C.K.: Acoustic metamaterial with negative density. Phys. Lett. A 373(48), 4464–4469 (2009)

    Article  Google Scholar 

  5. Yao, S., Zhou, X., Hu, G.: Experimental study on negative effective mass in a 1D mass-spring system. New J. Phys. 10(4), 043020 (2008)

    Article  Google Scholar 

  6. Wang, X.: Dynamic behaviour of a metamaterial system with negative mass and modulus. Int. J. Solids Struct. 51(7–8), 1534–1541 (2014)

    Article  Google Scholar 

  7. Mei, J., Liu, Z., Wen, W., Sheng, P.: Effective dynamic mass density of composites. Phys. Rev. B 76(13), 134205 (2007)

    Article  Google Scholar 

  8. Shestakova, A.: Development of mathematical models for freight cars subject to dynamic loading. PhD Thesis, Keele University (2015)

  9. Ansari, M., Esmailzadeh, E., Younesian, D.: Longitudinal dynamics of freight trains. Int. J. Heavy Veh. Syst. 16(1–2), 102–131 (2009)

    Article  Google Scholar 

  10. Wu, Q., Spiryagin, M., Cole, C.: Longitudinal train dynamics: an overview. Veh. Syst. Dyn. 54(12), 1688–1714 (2016). ISO 690

    Article  Google Scholar 

  11. Kaplunov, J., Shestakova, A., Aleynikov, I., Hopkins, B., Talonov, A.: Low-frequency perturbations of rigid body motions of a viscoelastic inhomogeneous bar. Mech. Time Depend. Mater. 19(2), 135–151 (2015)

    Article  Google Scholar 

  12. Kaplunov, J., Prikazchikov, D., Sergushova, O.: Multi-parametric analysis of the lowest natural frequencies of strongly inhomogeneous elastic rods. J. Sound Vib. 366, 264–276 (2016)

    Article  Google Scholar 

  13. Kaplunov, J., Prikazchikov, D.A., Prikazchikova, L.A., Sergushova, O.: The lowest vibration spectra of multi-component structures with contrast material properties. J. Sound Vib. 445, 132–147 (2019)

    Article  Google Scholar 

  14. Şahin, O.: The effect of boundary conditions on the lowest vibration modes of strongly inhomogeneous beams. J. Mech. Mater. Struct. 14(4), 569–585 (2019)

    Article  MathSciNet  Google Scholar 

  15. Şahin, O., Erbaş, B., Kaplunov, J., Savšek, T.: The lowest vibration modes of an elastic beam composed of alternating stiff and soft components. Arch. Appl. Mech. 90(2), 339–352 (2020)

    Article  Google Scholar 

  16. Kurfess, T.R. (ed.): Robotics and Automation Handbook. CRC Press, Boca Raton (2018)

    Google Scholar 

  17. Davim, J.P. (ed.): Introduction to Mechanical Engineering. Springer, Berlin (2018)

    Google Scholar 

  18. Aleksandrov, E.V., Sokolinskii, V.B.: Applied Theory and Calculation of Impact Systems. Nauka, Moscow (1969)

    Google Scholar 

  19. Meleshko, V.V.: Selected topics in the history of the two-dimensional biharmonic problem. Appl. Mech. Rev. 56(1), 33–85 (2003)

    Article  Google Scholar 

  20. Meleshko, V.V., Gomilko, A.M.: Infinite systems for a biharmonic problem in a rectangle: further discussion. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2043), 807–819 (2004)

    Article  MathSciNet  Google Scholar 

  21. Kovalenko, M.D., Menshova, I.V., Kerzhaev, A.P.: On the exact solutions of the biharmonic problem of the theory of elasticity in a half-strip. Z. Angew. Math. Phys. 69(5), 121 (2018)

    Article  MathSciNet  Google Scholar 

  22. Kaplunov, J.D., Kossovitch, L.Y., Nolde, E.V.: Dynamics of Thin Walled Elastic Bodies. Academic Press, Cambridge (1998)

    MATH  Google Scholar 

  23. Gregory, R.D., Wan, F.Y.: Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J. Elast. 14(1), 27–64 (1984)

    Article  MathSciNet  Google Scholar 

  24. Babenkova, E., Kaplunov, J.: Low-frequency decay conditions for a semi-infinite elastic strip. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2048), 2153–2169 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Şahin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplunov, J., Şahin, O. Perturbed rigid body motions of an elastic rectangle. Z. Angew. Math. Phys. 71, 160 (2020). https://doi.org/10.1007/s00033-020-01390-w

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01390-w

Keywords

Mathematics Subject Classification

Navigation