Skip to main content
Log in

Surface Reconstruction of Ag and Au–Ag Model Nano-catalysts During Exposure to Oxidising Gas Atmospheres

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

At the industrial level, Ag catalysts in the form of silver crystals held by a silver gauze are largely used for formaldehyde production and ethylene epoxidation. These self-supported structures undergo surface reconstructions and morphological changes upon exposure to moderately high temperatures (473–900 K) and oxidising atmospheres. These phenomena have been studied and well understood on single crystal surfaces and polycrystalline foils: different oxygen surface and sub-surface species have been identified and reconstruction processes explained. To verify the scalability of the surface science results and ultimately understand these phenomena on catalysts at the industrial scale, further studies on more complex samples are needed. Attempts to close this “materials gap” have been carried out in this present study where experiments have been performed on model single catalytic nanoparticles, i.e. the apexes of field emitter tips, using both field emission (FE) and field ion (FI) microscopies. Pure Ag samples are exposed to a pressure of 3 × 10–5 mbar of O2 at temperatures up to 700 K. These conditions reflect those used on the industrial scale. Important surface/morphological reconstructions are observed both in FE and FI modes. For comparison, experiments have been repeated on Au-8.8%at. Ag field emitter tips, representative samples for Au–Ag catalytic nanofoams, using to 3 × 10–5 mbar of NO2 at temperatures up to 450 K. Similar behaviour are observed and the influence of the oxidising gas is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andreasen A, Lynggaard H, Stegelmann C, Stoltze P (2005) Appl Catal A 289:267–273

    CAS  Google Scholar 

  2. van Santen RA, Kuipers HPCE (1987) Adv Catal 35:265–321

    Google Scholar 

  3. Bahmanpour AM, Hoadley A, Tanksale A (2014) Rev Chem Eng 30(6):583–604

    CAS  Google Scholar 

  4. Bao X, Muhler M, Schedel-Niedrig Th, Schlögl R (1996) Phys Rev B 54(3):2249–2262

    CAS  Google Scholar 

  5. Li W-X, Stampfl C, Scheffler M (2002) Phys Rev B 65:075407

    Google Scholar 

  6. Vattuone L, Rocca M, Boragno C, Valbusa U (1994) J Chem Phys 101:713–725

    CAS  Google Scholar 

  7. Buatier de Mongeot F, Rocca M, Valbusa U (1996) Surf Sci 363:68–72

    Google Scholar 

  8. Loncaric I, Alducin M, Juaristi JI (2015) Phys Chem Chem Phys 17:9436

    CAS  PubMed  Google Scholar 

  9. Engelhardt HA, Menzel D (1976) Surf Sci 57:591–618

    CAS  Google Scholar 

  10. Outlaw RA, Wu D, Davidson MR, Hoflund GB (1992) J Vac Sci Technol, A 10:1497

    CAS  Google Scholar 

  11. Hus M, Hellman A (2019) ACS Catalysis 9:1183–1196

    CAS  Google Scholar 

  12. Nagy AJ, Mestl G, Herein D, Weinberg G, Kitzelmann E, Schlögl R (1999) J Catal 182:417–429

    CAS  Google Scholar 

  13. Xu Y, Greeley J, Mavrikakis M (2005) J Am Chem Soc 127:12823–12827

    CAS  PubMed  Google Scholar 

  14. Herein D, Nagy A, Schubert H, Weinberg G, Kitzelmann E, Schlögl R (1996) Z für Phys Ch 197:67–96

    CAS  Google Scholar 

  15. Czanderna AW (1966) J Phys Chem 70:2120

    CAS  Google Scholar 

  16. Bao X, Barth JV, Lehmpfuhl G, Schuster R, Uchida Y, Schlögl R (1993) Ertl G 284:14–22

    CAS  Google Scholar 

  17. Schubert H, Tegtmeyer U, Herein D, Bao X, Muhler M, Schlögl R (1995) Catal Lett 33:305–319

    CAS  Google Scholar 

  18. Rovida G, Pratesi F, Maglietta M, Ferroni E (1972) J Vacuum Sci Technol 9(2):769–799

    Google Scholar 

  19. Rovida G, Pratesi F, Maglietta M, Ferroni E (1974) Surf Sci 43:230–256

    CAS  Google Scholar 

  20. Bao X, Lehmpfuhl G, Weinberg G, Schlögl R, Ertl G (1992) J Chem Soc Faraday Trans 88(6):865–872

    CAS  Google Scholar 

  21. Schmidt WA, Frank O, Czanderna AW (1973) Phys Stat Sol A 16:127

    CAS  Google Scholar 

  22. Czanderna AW, Frank O, Schmidt WA (1973) Surf Sci 38:129–138

    CAS  Google Scholar 

  23. Janssen MMP, Moolhuysen J, Sachtler WMH (1972) Surf Sci 33:624–629

    CAS  Google Scholar 

  24. Barroo C, Austin JK, Bell DC (2019) Appl Surf Sci 487:1362–1365

    CAS  Google Scholar 

  25. Montemore MM, Montessori A, Succi S, Barroo C, Falcucci G, Bell DC, Kaxiras E (2017) J Chem Phys 146:214703

    PubMed  PubMed Central  Google Scholar 

  26. Barroo C, Montemore MM, Janvelyan N, Zugic B, Akey AJ, Magyar AP, Ye J, Kaxiras E, Biener J, Bell DC (2017) J Phys Chem C 121:5115–5122

    CAS  Google Scholar 

  27. Fowler RH, Nordheim DL (1928) Proc R Soc Lond Ser A 119:173–181

    CAS  Google Scholar 

  28. Forbes RG (1999) Ultramicroscopy 79:11–23

    CAS  Google Scholar 

  29. Bär T, Visart de Bocarmé T, Kruse N (2000) Surf Sci 454–456:240–245

    Google Scholar 

  30. Buatier de Mongeot F, Valbusa U, Rocca M (1995) Surf Sci 339:291–296

    CAS  Google Scholar 

  31. Campbell CT (1985) Surf Sci 157:43–60

    CAS  Google Scholar 

  32. Schmalzried H (1995) Chemical Kinetics of Solids. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  33. Argyl MD, Bartholomew CH (2015) Catalysts 5:145–269

    Google Scholar 

  34. Lambeets SV, Visart de Bocarmé T, Perea DE, Kruse N (2020) J. Phys. Chem. Lett. 11(8):3144–3151

    CAS  PubMed  Google Scholar 

  35. Montemore MM, Cubuk ED, Klobas JE, Schmid M, Madix RJ, Friend CM, Kaxiras E (2016) Phys Chem Chem Phys 18:26844–26853

    CAS  PubMed  Google Scholar 

  36. Montemore MM, Madix RJ, Kaxiras E (2016) J Phys Chem C 120(30):16636–16640

    CAS  Google Scholar 

  37. Visart de Bocarmé T, Chau T-D, Tielens F, Andrés J, Gaspard P (2006) J. Chem. Phys. 125:054703

    PubMed  Google Scholar 

  38. Tielens F, Andrés J, Chau T-D, Visart de Bocarmé T, Kruse N, Geerlings P (2006) Chem Phys Lett 421:433–438

    CAS  Google Scholar 

  39. Visart de Bocarmé T, Chau T-D, Kruse N (2007) Surf Interface Anal 39:166–171

    Google Scholar 

  40. Boronat M, Pulido A, Concepcion P, Corma A (2014) Phys Chem Chem Phys 16:26600

    CAS  PubMed  Google Scholar 

  41. Montemore MM, Madix RJ, Kaxiras E (2016) J Phys Chem C 120:16636–16640

    CAS  Google Scholar 

  42. Deng X, Min BK, Guloy A, Friend CM (2005) J Am Chem Soc 127:9267–9270

    CAS  PubMed  Google Scholar 

  43. Jacobs L, Barroo C, Gilis N, Lambeets SV, Genty E, Visart de Bocarmé T (2018) Appl Surf Sci 435:914–919

    CAS  Google Scholar 

  44. Gilis N, Jacobs L, Barroo C, Visart de Bocarmé T (2018) Top Catal 61:1437–1448

    CAS  Google Scholar 

Download references

Funding

Luc Jacobs and Cédric Barroo thank the Fonds de la Recherche Scientifique (F.R.S.-FNRS) for financial support: PhD grant from FRIA (L.J.) and postdoctoral fellowship from FNRS (C.B.).The authors thanks Dr. Eric Genty for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Funding of the project: L.J., C.B., T.V., Design and realisation of the experiments: L.J., C.B., Interpretation of the data: L.J., C.B., Manuscript writing: L.J., Manuscript review, L.J., C.B., T.V.

Corresponding author

Correspondence to Luc Jacobs.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Data Availability of Data and Material

All used materials are commercially available. Precise information on the presented data are available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobs, L., Barroo, C. & Visart de Bocarmé, T. Surface Reconstruction of Ag and Au–Ag Model Nano-catalysts During Exposure to Oxidising Gas Atmospheres. Top Catal 63, 1569–1577 (2020). https://doi.org/10.1007/s11244-020-01365-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01365-1

Keywords

Navigation