Skip to main content
Log in

Effect of vacancy defects on transport properties of α-armchair graphyne nanoribbons

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effect of vacancy defects on electrons transport behavior of the alpha-armchair graphyne nanoribbons has been studied by density-functional tight-binding and non-equilibrium Green’s function methods. Three different widths of the nanoribbons with 6, 7 and 8 atoms and four types of vacancy defects contain one, two, three and four missing atoms were selected in this study. In relaxed structures, the structural changes around the defects are observed. Some of the free hands form new atomic chains containing 6 or 7 atoms. Comparing with perfect devices, the current decreases at the defective devices with 8 atoms width, whereas, it increases for devices with 6 atoms width. By calculating the density of states, transmission spectrums and molecular energy spectrums for devices with 6-atoms widths, there is a resonance state for DDOS and T(E) peaks in the QV device, while the peak of the density of states and transmission spectrums does not match in the SV1 device. Also, the results show that HOMO-LUMO gap energy in the SV1 device is much more than the perfect and QV devices. For devices with 8 atoms width, the transmission spectrums are reduced for all defects due to the lower density of the energy level of molecular energy. However, the orbital distribution of LUMO state in the device with the defect is localized but for the perfect structure, both the LUMO and the HOMO orbital distribution are quite delocalized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Hirsch, Nature 9, 868 (2010)

    Google Scholar 

  2. H.W. Kroto, J.R. Heath, S.C. O’brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    ADS  Google Scholar 

  3. S. Iijima, Nature 354, 56 (1991)

    ADS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  5. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  6. A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, Nat. Phys. 3, 36 (2007)

    Google Scholar 

  7. V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvao, R.H. Baughman, Nanotechnology 15, S142 (2004)

    ADS  Google Scholar 

  8. Q. Tang, Z. Zhou, Z.F. Chen, Nanoscale 5, 4541 (2013)

    ADS  Google Scholar 

  9. Y.W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E.H. Hwang, S. Das Sarma, H.L. Stormer, P. Kim, Phys. Rev. Lett. 99, 246803 (2007)

    ADS  Google Scholar 

  10. D. Malko, C. Neiss, F. Viñes, A. Görling, Phys. Rev. Lett. 108, 086804 (2012)

    ADS  Google Scholar 

  11. W. Wu, W. Guo, X.Ch. Zeng, Nanoscale 5, 9264 (2013)

    ADS  Google Scholar 

  12. R.H. Baughman, H. Eckhardt, J. Chem. Phys. 87, 6687 (1987)

    ADS  Google Scholar 

  13. M.M. Haley, S.C. Brand, J.J. Pak, Angewandte, Chem. Int. Ed. 36, 836 (1997)

    Google Scholar 

  14. P. Nayebi, E. Zaminpayma, Physica B 521, 112 (2017)

    ADS  Google Scholar 

  15. M.M. Haley, S.C. Brand, J.J. Pak, Angew. Chem. Int. Ed. Engl. 36, 836 (1997)

    Google Scholar 

  16. G.X. Li, Y.L. Li, H.B. Liu, Y.B. Guo, Y.J. Li, D.B. Zhu, Chem. Commun. 46, 3256 (2010)

    Google Scholar 

  17. Y. Li, L. Xu, H. Liu, Y. Li, Chem. Soc. Rev. 43, 2572 (2014)

    Google Scholar 

  18. J. Kang, J. Li, F. Wu, S.S. Li, J.B. Xia, J. Phys. Chem. C 115, 20466 (2011)

    Google Scholar 

  19. F.J. Owens, Solid State Commun. 250, 75 (2017)

    ADS  Google Scholar 

  20. S. Haji-Nasiri, S. Fotoohi, Phys. Lett. A 382, 2894 (2018)

    ADS  Google Scholar 

  21. B. Wu, X. Tang, J. Yin, W. Zhang, Y. Jiang, P. Zhang, Y. Ding, Mater. Res. Express 4, 025603 (2017)

    ADS  Google Scholar 

  22. N.B. Singh, B. Bhattacharya, U. Sarkar, Struct. Chem. 25, 1695 (2014)

    Google Scholar 

  23. N. Narita, S. Nagai, S. Suzuki, K. Nakao, Phys. Rev. B 58, 11009 (1998)

    ADS  Google Scholar 

  24. A.R. Puigdollers, G. Alonso, P. Gamallo, Carbon 96, 879 (2016)

    Google Scholar 

  25. J.V.N. Sarma, R. Chowdhury, J. Rengaswamy, Nano 09, 1450032 (2014)

    Google Scholar 

  26. Y-Q. Liu, L. Xu, J. Zhang, Phys. Lett. A 383, 1498 (2019)

    ADS  Google Scholar 

  27. Q. Yue, S.L. Chang, J. Kang, J.C. Tan, S.Q. Qin, J.B. Li, J. Chem. Phys. 136, 244702 (2012)

    ADS  Google Scholar 

  28. H. Sevincli, C. Sevik, Appl. Phys. Lett. 105, 223108 (2014)

    ADS  Google Scholar 

  29. S. Behzad, Eur. Phys. J. B 89, 112 (2016)

    ADS  Google Scholar 

  30. C. Wang, T. Ouyang, Y. Chen, J. Zhong, Eur. Phys. J. B 88, 130 (2015)

    ADS  Google Scholar 

  31. Q. Yue, S. Chang, J. Kang, J. Tan, S. Qin, J. Li, J. Chem. Phys. 136, 244702 (2012)

    ADS  Google Scholar 

  32. K. Iordanidou, M. Houssa, B. van den Broek, G. Pourtois, V. Afanasev, A. Stesmans, J. Phys.: Condens. Matter 28, 035302 (2016)

    ADS  Google Scholar 

  33. M. Manoharan, H. Mizuta, Carbon 64, 416 (2013)

    Google Scholar 

  34. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Lijima, Nature 430, 870 (2004)

    ADS  Google Scholar 

  35. E. Zaminpayma, M.E. Razavi, P. Nayebi, Appl. Surf. Sci. 414, 101 (2017)

    ADS  Google Scholar 

  36. P. Nayebi, E. Zaminpayma, M. Emami-Razavi, Thin Solid Films 660, 521 (2018)

    ADS  Google Scholar 

  37. M. Long, L. Tang, D. Wang, Y. Li, Z. Shuai, ACS Nano 5, 2593 (2011)

    Google Scholar 

  38. J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossel, M.F. Crommie, A. Zettl, Nano Lett. 8, 3582 (2008)

    ADS  Google Scholar 

  39. B. Kang, H. Ai, J.Y. Lee, Carbon 116, 113 (2017)

    Google Scholar 

  40. L.D. Pan, L.Z. Zhang, B.Q. Song, S.X. Du, H.-J. Gao, Appl. Phys. Lett. 98, 173102 (2011)

    ADS  Google Scholar 

  41. S. Kim, J.Y. Lee, J. Colloid Interface Sci. 493, 123 (2017)

    ADS  Google Scholar 

  42. H.Y. Deng, K. Wakabayashi, Phys. Rev. B 91, 035425 (2015)

    ADS  Google Scholar 

  43. J. Yun, Y. Zhang, M. Xu, K. Wang, Z. Zhang, Mater. Chem. Phys. 182, 439e444 (2016)

    Google Scholar 

  44. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5, 26 (2011)

    Google Scholar 

  45. F. Ersan, A. Gökc, E. Aktürk, Appl. Surf. Sci. 389, 1 (2016)

    ADS  Google Scholar 

  46. F. Ersan, G. Gökoglu, E. Aktürk, J. Phys.: Condens. Matter 26, 325303 (2014)

    Google Scholar 

  47. C. Ataca, H. Sahin, E. Aktürk, S. Ciraci, J. Phys. Chem. C 115, 3934 (2011)

    Google Scholar 

  48. E. Bekaroglu, M. Topsakal, S. Cahangirov, S. Ciraci, Phys. Rev. B 81, 075433 (2010)

    ADS  Google Scholar 

  49. S. Wu, Y. Yuan, H. Ai, J.Y. Lee, B. Kang, Phys. Chem. Chem. Phys. 20, 22739 (2018)

    Google Scholar 

  50. M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payman Nayebi.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayebi, P., Shamshirsaz, M. Effect of vacancy defects on transport properties of α-armchair graphyne nanoribbons. Eur. Phys. J. B 93, 170 (2020). https://doi.org/10.1140/epjb/e2020-10183-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10183-5

Keywords

Navigation