Skip to main content
Log in

Crystallinity and stability of covalent organic frameworks

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) are a class of organic porous polymers with high crystallinity, and their structures can be precisely tailored via topology design. Owing to the characteristics of permanent pores, periodic structures and rich building blocks, COFs have triggered tremendous attention in the past fifteen years and are extensively investigated in various fields. Crystallinity and stability are two crucial features for practical applications. In general, these two features are contradictory for COFs formed via dynamic covalent chemistry (DCC). High thermodynamic reversibility is usually required to attain exceptional crystallinity of COFs, often resulting in limited stability. The first two reported COFs are based on the boroxine and boronate ester linkages, which are unstable in water and even in humid conditions. Therefore, many researchers doubt the stability of COFs for real applications. Actually, in these years, various novel linkages have been developed for the construction of COFs, and numerous newly synthesized COFs are robust towards strong acid/base and even some of them can resist the attack of strong oxidizing and reducing agents. In this review, we focus on the linkage chemistry of the COFs in terms of crystallinity and stability, further extending it to the investigation in the mechanisms of the crystal growth and the overall regulation of the contradiction between stability and crystallinity. The strategies for improving the crystallinity, including selecting building units, introducing non-covalent interactions and slowing nucleation and growth rate, are described in the third section, while the methodologies for increasing the stability from the viewpoints of chemical modification and non-covalent interactions are summarized in the fourth section. Finally, the challenges and perspectives are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Feng X, Ding X, Jiang D. Chem Soc Rev, 2012, 41: 6010–6022

    PubMed  CAS  Google Scholar 

  2. Ding SY, Wang W. Chem Soc Rev, 2013, 42: 548–568

    PubMed  CAS  Google Scholar 

  3. Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Chem Rev, 2020, 120: 8814–8933

    PubMed  CAS  Google Scholar 

  4. Diercks CS, Yaghi OM. Science, 2017, 355: eaal1585

    PubMed  Google Scholar 

  5. Wang S, Feng X, Wang B. Chin Sci Bull, 2018, 63: 2229–2245

    Google Scholar 

  6. Yuan F, Tan J, Guo J. Sci China Chem, 2018, 61: 143–152

    Google Scholar 

  7. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Science, 2005, 310: 1166–1170

    PubMed  Google Scholar 

  8. Côté AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM. J Am Chem Soc, 2007, 129: 12914–12915

    PubMed  Google Scholar 

  9. Zeng Y, Zou R, Luo Z, Zhang H, Yao X, Ma X, Zou R, Zhao Y. J Am Chem Soc, 2015, 137: 1020–1023

    PubMed  CAS  Google Scholar 

  10. Feng X, Chen L, Dong Y, Jiang D. Chem Commun, 2011, 47: 1979–1981

    CAS  Google Scholar 

  11. Feng X, Ding X, Chen L, Wu Y, Liu L, Addicoat M, Irle S, Dong Y, Jiang D. Sci Rep, 2016, 6: 32944

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D. J Am Chem Soc, 2013, 135: 17310–17313

    PubMed  CAS  Google Scholar 

  13. Chen R, Shi JL, Ma Y, Lin G, Lang X, Wang C. Angew Chem Int Ed, 2019, 58: 6430–6434

    CAS  Google Scholar 

  14. Dalapati S, Addicoat M, Jin S, Sakurai T, Gao J, Xu H, Irle S, Seki S, Jiang D. Nat Commun, 2015, 6: 7786

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Xu SQ, Zhan TG, Wen Q, Pang ZF, Zhao X. ACS Macro Lett, 2016, 5: 99–102

    CAS  Google Scholar 

  16. Zhou TY, Xu SQ, Wen Q, Pang ZF, Zhao X. J Am Chem Soc, 2014, 136: 15885–15888

    PubMed  CAS  Google Scholar 

  17. Liang RR, Jiang SY, ARH, Zhao X. Chem Soc Rev, 2020, 49: 3920–3951

    PubMed  CAS  Google Scholar 

  18. El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O’Keeffe M, Yaghi OM. Science, 2007, 316: 268–272

    PubMed  CAS  Google Scholar 

  19. Uribe-Romo FJ, Hunt JR, Furukawa H, Klock C, O’Keeffe M, Yaghi OM. J Am Chem Soc, 2009, 131: 4570–4571

    PubMed  CAS  Google Scholar 

  20. Lin G, Ding H, Yuan D, Wang B, Wang C. J Am Chem Soc, 2016, 138: 3302–3305

    PubMed  CAS  Google Scholar 

  21. Zhang Y, Duan J, Ma D, Li P, Li S, Li H, Zhou J, Ma X, Feng X, Wang B. Angew Chem Int Ed, 2017, 56: 16313–16317

    CAS  Google Scholar 

  22. Yahiaoui O, Fitch AN, Hoffmann F, Fröba M, Thomas A, Roeser J. J Am Chem Soc, 2018, 140: 5330–5333

    PubMed  CAS  Google Scholar 

  23. Lan Y, Han X, Tong M, Huang H, Yang Q, Liu D, Zhao X, Zhong C. Nat Commun, 2018, 9: 5274

    PubMed  PubMed Central  Google Scholar 

  24. Ma T, Kapustin EA, Yin SX, Liang L, Zhou Z, Niu J, Li LH, Wang Y, Su J, Li J, Wang X, Wang WD, Wang W, Sun J, Yaghi OM. Science, 2018, 361: 48–52

    PubMed  CAS  Google Scholar 

  25. Furukawa H, Yaghi OM. J Am Chem Soc, 2009, 131: 8875–8883

    PubMed  CAS  Google Scholar 

  26. Wang Z, Zhang S, Chen Y, Zhang Z, Ma S. Chem Soc Rev, 2020, 49: 708–735

    PubMed  CAS  Google Scholar 

  27. Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W. J Am Chem Soc, 2011, 133: 19816–19822

    PubMed  CAS  Google Scholar 

  28. Liu G, Sheng J, Zhao Y. Sci China Chem, 2017, 60: 1015–1022

    CAS  Google Scholar 

  29. Guo J, Jiang D. ACS Cent Sci, 2020, 6: 869–879

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhou J, Wang B. Chem Soc Rev, 2017, 46: 6927–6945

    PubMed  CAS  Google Scholar 

  31. Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Chem Soc Rev, 2020, 49: 3565–3604

    PubMed  CAS  Google Scholar 

  32. Cai P, Peng X, Huang J, Jia J, Hu X, Wen Z. Sci China Chem, 2019, 62: 385–392

    CAS  Google Scholar 

  33. Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew Chem Int Ed, 2008, 47: 8826–8830

    CAS  Google Scholar 

  34. Jin S, Supur M, Addicoat M, Furukawa K, Chen L, Nakamura T, Fukuzumi S, Irle S, Jiang D. J Am Chem Soc, 2015, 137: 7817–7827

    PubMed  CAS  Google Scholar 

  35. Li X, Gao Q, Wang J, Chen Y, Chen ZH, Xu HS, Tang W, Leng K, Ning GH, Wu J, Xu QH, Quek SY, Lu Y, Loh KP. Nat Commun, 2018, 9: 2335

    PubMed  PubMed Central  Google Scholar 

  36. Wang LL, Yang CX, Yan XP. Sci China Chem, 2018, 61: 1470–1474

    CAS  Google Scholar 

  37. Liu X, Huang D, Lai C, Zeng G, Qin L, Wang H, Yi H, Li B, Liu S, Zhang M, Deng R, Fu Y, Li L, Xue W, Chen S. Chem Soc Rev, 2019, 48: 5266–5302

    PubMed  CAS  Google Scholar 

  38. Scicluna MC, Vella-Zarb L. ACS Appl Nano Mater, 2020, 3: 3097–3115

    CAS  Google Scholar 

  39. Jin Y, Yu C, Denman RJ, Zhang W. Chem Soc Rev, 2013, 42: 6634–6654

    PubMed  CAS  Google Scholar 

  40. Wehner M, Würthner F. Nat Rev Chem, 2019, 4: 38–53

    Google Scholar 

  41. Bai L, Phua SZF, Lim WQ, Jana A, Luo Z, Tham HP, Zhao L, Gao Q, Zhao Y. Chem Commun, 2016, 52: 4128–4131

    CAS  Google Scholar 

  42. Biswal BP, Chaudhari HD, Banerjee R, Kharul UK. Chem Eur J, 2016, 22: 4695–4699

    PubMed  CAS  Google Scholar 

  43. Lanni LM, Tilford RW, Bharathy M, Lavigne JJ. J Am Chem Soc, 2011, 133: 13975–13983

    PubMed  CAS  Google Scholar 

  44. Du Y, Calabro D, Wooler B, Kortunov P, Li Q, Cundy S, Mao K. Chem Mater, 2015, 27: 1445–1447

    CAS  Google Scholar 

  45. Du Y, Yang H, Whiteley JM, Wan S, Jin Y, Lee SH, Zhang W. Angew Chem Int Ed, 2016, 55: 1737–1741

    CAS  Google Scholar 

  46. Waller PJ, Lyle SJ, Osborn Popp TM, Diercks CS, Reimer JA, Yaghi OM. J Am Chem Soc, 2016, 138: 15519–15522

    PubMed  CAS  Google Scholar 

  47. Daugherty MC, Vitaku E, Li RL, Evans AM, Chavez AD, Dichtel WR. Chem Commun, 2019, 55: 2680–2683

    CAS  Google Scholar 

  48. Xu H, Gao J, Jiang D. Nat Chem, 2015, 7: 905–912

    PubMed  CAS  Google Scholar 

  49. Li Y, Wang C, Ma S, Zhang H, Ou J, Wei Y, Ye M. ACS Appl Mater Interfaces, 2019, 11: 11706–11714

    PubMed  CAS  Google Scholar 

  50. Wang K, Tang Y, Jiang Q, Lan Y, Huang H, Liu D, Zhong C. J Energy Chem, 2017, 26: 902–908

    Google Scholar 

  51. Das G, Biswal BP, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S, Banerjee R. Chem Sci, 2015, 6: 3931–3939

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Stewart D, Antypov D, Dyer MS, Pitcher MJ, Katsoulidis AP, Chater PA, Blanc F, Rosseinsky MJ. Nat Commun, 2017, 8: 1102

    PubMed  PubMed Central  Google Scholar 

  53. Jiang SY, Gan SX, Zhang X, Li H, Qi QY, Cui FZ, Lu J, Zhao X. J Am Chem Soc, 2019, 141: 14981–14986

    PubMed  CAS  Google Scholar 

  54. Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R. J Am Chem Soc, 2012, 134: 19524–19527

    PubMed  CAS  Google Scholar 

  55. Chandra S, Kundu T, Kandambeth S, Babarao R, Marathe Y, Kunjir SM, Banerjee R. J Am Chem Soc, 2014, 136: 6570–6573

    PubMed  CAS  Google Scholar 

  56. Rao MR, Fang Y, De Feyter S, Perepichka DF. J Am Chem Soc, 2017, 139: 2421–2427

    PubMed  CAS  Google Scholar 

  57. Jin E, Li J, Geng K, Jiang Q, Xu H, Xu Q, Jiang D. Nat Commun, 2018, 9: 4143

    PubMed  PubMed Central  Google Scholar 

  58. Lyu H, Diercks CS, Zhu C, Yaghi OM. J Am Chem Soc, 2019, 141: 6848–6852

    PubMed  CAS  Google Scholar 

  59. Guan X, Li H, Ma Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Nat Chem, 2019, 11: 587–594

    PubMed  CAS  Google Scholar 

  60. Zhang B, Wei M, Mao H, Pei X, Alshmimri SA, Reimer JA, Yaghi OM. J Am Chem Soc, 2018, 140: 12715–12719

    PubMed  CAS  Google Scholar 

  61. Wang PL, Ding SY, Zhang ZC, Wang ZP, Wang W. Am Chem Soc, 2019, 141: 18004–18008

    CAS  Google Scholar 

  62. Wei PF, Qi MZ, Wang ZP, Ding SY, Yu W, Liu Q, Wang LK, Wang HZ, An WK, Wang W. Am Chem Soc, 2018, 140: 4623–4631

    CAS  Google Scholar 

  63. Waller PJ, AlFaraj YS, Diercks CS, Jarenwattananon NN, Yaghi OM. J Am Chem Soc, 2018, 140: 9099–9103

    PubMed  CAS  Google Scholar 

  64. Haase F, Troschke E, Savasci G, Banerjee T, Duppel V, Dörfler S, Grundei MMJ, Burow AM, Ochsenfeld C, Kaskel S, Lotsch BV. Nat Commun, 2018, 9: 2600

    PubMed  PubMed Central  Google Scholar 

  65. Hunt JR, Doonan CJ, LeVangie JD, Cote AP, Yaghi OM. Am Chem Soc, 2008, 130: 11872–11873

    CAS  Google Scholar 

  66. Nagai A, Chen X, Feng X, Ding X, Guo Z, Jiang D. Angew Chem Int Ed, 2013, 52: 3770–3774

    CAS  Google Scholar 

  67. Guo J, Xu Y, Jin S, Chen L, Kaji T, Honsho Y, Addicoat MA, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D. Nat Commun, 2013, 4: 2736

    PubMed  PubMed Central  Google Scholar 

  68. Ma Y, Liu X, Guan X, Li H, Yusran Y, Xue M, Fang Q, Yan Y, Qiu S, Valtchev V. Dalton Trans, 2019, 48: 7352–7357

    PubMed  CAS  Google Scholar 

  69. Li C, Ma Y, Liu H, Tao L, Ren Y, Chen X, Li H, Yang Q. Chin J Catal, 2020, 41: 1288–1297

    CAS  Google Scholar 

  70. Nishiyabu R, Kubo Y, James TD, Fossey JS. Chem Commun, 2011, 47: 1124–1150

    CAS  Google Scholar 

  71. Spitler EL, Giovino MR, White SL, Dichtel WR. Chem Sci, 2011, 2: 1588–1593

    CAS  Google Scholar 

  72. Smith BJ, Dichtel WR. J Am Chem Soc, 2014, 136: 8783–8789

    PubMed  CAS  Google Scholar 

  73. Koo BT, Heden RF, Clancy P. Phys Chem Chem Phys, 2017, 19: 9745–9754

    PubMed  CAS  Google Scholar 

  74. Li H, Chavez AD, Li H, Li H, Dichtel WR, Bredas JL. J Am Chem Soc, 2017, 139: 16310–16318

    PubMed  CAS  Google Scholar 

  75. Li H, Evans AM, Castano I, Strauss MJ, Dichtel WR, Bredas JL. J Am Chem Soc, 2020, 142: 1367–1374

    PubMed  CAS  Google Scholar 

  76. Li H, Li H, Dai Q, Li H, Brédas JL. Adv Theor Simul, 2018, 1: 1700015

    Google Scholar 

  77. Zhang Z, He C, Chen X. Mater Chem Front, 2018, 2: 1765–1778

    CAS  Google Scholar 

  78. Smith BJ, Overholts AC, Hwang N, Dichtel WR. Chem Commun, 2016, 52: 3690–3693

    CAS  Google Scholar 

  79. Fischbach DM, Rhoades G, Espy C, Goldberg F, Smith BJ. Chem Commun, 2019, 55: 3594–3597

    CAS  Google Scholar 

  80. Kandambeth S, Dey K, Banerjee R. J Am Chem Soc, 2019, 141: 1807–1822

    PubMed  CAS  Google Scholar 

  81. Uribe-Romo FJ, Doonan CJ, Furukawa H, Oisaki K, Yaghi OM. J Am Chem Soc, 2011, 133: 11478–11481

    PubMed  CAS  Google Scholar 

  82. Nguyen R, Huc I. Chem Commun, 2003, 942–943

  83. Fang Q, Zhuang Z, Gu S, Kaspar RB, Zheng J, Wang J, Qiu S, Yan Y. Nat Commun, 2014, 5: 4503

    PubMed  Google Scholar 

  84. Han X, Huang J, Yuan C, Liu Y, Cui Y. J Am Chem Soc, 2018, 140: 892–895

    PubMed  CAS  Google Scholar 

  85. Kuhn P, Antonietti M, Thomas A. Angew Chem Int Ed, 2008, 47: 3450–3453

    CAS  Google Scholar 

  86. Ren S, Bojdys MJ, Dawson R, Laybourn A, Khimyak YZ, Adams DJ, Cooper AI. Adv Mater, 2012, 24: 2357–2361

    PubMed  CAS  Google Scholar 

  87. Liu J, Zan W, Li K, Yang Y, Bu F, Xu Y. J Am Chem Soc, 2017, 139: 11666–11669

    PubMed  CAS  Google Scholar 

  88. Troschke E, Grätz S, Lübken T, Borchardt L. Angew Chem Int Ed, 2017, 56: 6859–6863

    CAS  Google Scholar 

  89. Wang K, Yang LM, Wang X, Guo L, Cheng G, Zhang C, Jin S, Tan B, Cooper A. Angew Chem Int Ed, 2017, 56: 14149–14153

    CAS  Google Scholar 

  90. Zhuang X, Zhao W, Zhang F, Cao Y, Liu F, Bi S, Feng X. Polym Chem, 2016, 7: 4176–4181

    CAS  Google Scholar 

  91. Jenner G. Tetrahedron Lett, 2001, 42: 243–245

    CAS  Google Scholar 

  92. Wang K, Jia Z, Bai Y, Wang X, Hodgkiss SE, Chen L, Chong SY, Wang X, Yang H, Xu Y, Feng F, Ward JW, Cooper AI. J Am Chem Soc, 2020, 142: 11131–11138

    PubMed  CAS  Google Scholar 

  93. Mahmood J, Ahmad I, Jung M, Seo JM, Yu SY, Noh HJ, Kim YH, Shin HJ, Baek JB. Commun Chem, 2020, 3: 31

    CAS  Google Scholar 

  94. Li X, Wang H, Chen H, Zheng Q, Zhang Q, Mao H, Liu Y, Cai S, Sun B, Dun C, Gordon MP, Zheng H, Reimer JA, Urban JJ, Ciston J, Tan T, Chan EM, Zhang J, Liu Y. Chem, 2020, 6: 933–944

    CAS  Google Scholar 

  95. Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qiu S, Zhu G. Angew Chem Int Ed, 2009, 48: 9457–9460

    CAS  Google Scholar 

  96. Smith BJ, Hwang N, Chavez AD, Novotney JL, Dichtel WR. Chem Commun, 2015, 51: 7532–7535

    CAS  Google Scholar 

  97. Salonen LM, Medina DD, Carbó-Argibay E, Goesten MG, Mafra L, Guldris N, Rotter JM, Stroppa DG, Rodríguez-Abreu C. Chem Commun, 2016, 52: 7986–7989

    CAS  Google Scholar 

  98. Alahakoon SB, McCandless GT, Karunathilake AAK, Thompson CM, Smaldone RA. Chem Eur J, 2017, 23: 4255–4259

    PubMed  CAS  Google Scholar 

  99. Braunecker WA, Hurst KE, Ray KG, Owczarczyk ZR, Martinez MB, Leick N, Keuhlen A, Sellinger A, Johnson JC. Cryst Growth Des, 2018, 18: 4160–4166

    CAS  Google Scholar 

  100. Thompson CM, Occhialini G, McCandless GT, Alahakoon SB, Cameron V, Nielsen SO, Smaldone RA. J Am Chem Soc, 2017, 139: 10506–10513

    PubMed  CAS  Google Scholar 

  101. Spitler EL, Koo BT, Novotney JL, Colson JW, Uribe-Romo FJ, Gutierrez GD, Clancy P, Dichtel WR. J Am Chem Soc, 2011, 133: 19416–19421

    PubMed  CAS  Google Scholar 

  102. Ascherl L, Sick T, Margraf JT, Lapidus SH, Calik M, Hettstedt C, Karaghiosoff K, Döblinger M, Clark T, Chapman KW, Auras F, Bein T. Nat Chem, 2016, 8: 310–316

    CAS  Google Scholar 

  103. Kandambeth S, Shinde DB, Panda MK, Lukose B, Heine T, Banerjee R. Angew Chem Int Ed, 2013, 52: 13052–13056

    CAS  Google Scholar 

  104. Shinde DB, Kandambeth S, Pachfule P, Kumar RR, Banerjee R. Chem Commun, 2015, 51: 310–313

    CAS  Google Scholar 

  105. Chen X, Addicoat M, Jin E, Zhai L, Xu H, Huang N, Guo Z, Liu L, Irle S, Jiang D. J Am Chem Soc, 2015, 137: 3241–3247

    PubMed  CAS  Google Scholar 

  106. A. Maiar, Oliveira FL, Nazarkovsky M, Esteves PM. Cryst Growth Des, 2018, 18: 5682–5689

    Google Scholar 

  107. Karak S, Kandambeth S, Biswal BP, Sasmal HS, Kumar S, Pachfule P, Banerjee R. J Am Chem Soc, 2017, 139: 1856–1862

    PubMed  CAS  Google Scholar 

  108. Karak S, Kumar S, Pachfule P, Banerjee R. J Am Chem Soc, 2018, 140: 5138–5145

    PubMed  CAS  Google Scholar 

  109. Liu M, Huang Q, Wang S, Li Z, Li B, Jin S, Tan B. Angew Chem Int Ed, 2018, 57: 11968–11972

    CAS  Google Scholar 

  110. Liu M, Jiang K, Ding X, Wang S, Zhang C, Liu J, Zhan Z, Cheng G, Li B, Chen H, Jin S, Tan B. Adv Mater, 2019, 31: 1807865

    Google Scholar 

  111. Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Angew Chem Int Ed, 2020, 59: 6007–6014

    CAS  Google Scholar 

  112. Evans AM, Parent LR, Flanders NC, Bisbey RP, Vitaku E, Kirschner MS, Schaller RD, Chen LX, Gianneschi NC, Dichtel WR. Science, 2018, 361: 52–57

    PubMed  CAS  Google Scholar 

  113. Li RL, Flanders NC, Evans AM, Ji W, Castano I, Chen LX, Gianneschi NC, Dichtel WR. Chem Sci, 2019, 10: 3796–3801

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Calik M, Sick T, Dogru M, Döblinger M, Datz S, Budde H, Hartschuh A, Auras F, Bein T. J Am Chem Soc, 2016, 138: 1234–1239

    PubMed  CAS  Google Scholar 

  115. Du Y, Mao K, Kamakoti P, Ravikovitch P, Paur C, Cundy S, Li Q, Calabro D. Chem Commun, 2012, 48: 4606–4608

    CAS  Google Scholar 

  116. Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J Am Chem Soc, 2013, 135: 5328–5331

    PubMed  CAS  Google Scholar 

  117. Li X, Zhang C, Cai S, Lei X, Altoe V, Hong F, Urban JJ, Ciston J, Chan EM, Liu Y. Nat Commun, 2018, 9: 2998

    PubMed  PubMed Central  Google Scholar 

  118. Seo JM, Noh HJ, Jeong HY, Baek JB. J Am Chem Soc, 2019, 141: 11786–11790

    PubMed  CAS  Google Scholar 

  119. Kandambeth S, Venkatesh V, Shinde DB, Kumari S, Halder A, Verma S, Banerjee R. Nat Commun, 2015, 6: 6786

    PubMed  CAS  Google Scholar 

  120. Halder A, Karak S, Addicoat M, Bera S, Chakraborty A, Kunjattu SH, Pachfule P, Heine T, Banerjee R. Angew Chem Int Ed, 2018, 57: 5797–5802

    CAS  Google Scholar 

  121. Huang N, Zhai L, Xu H, Jiang D. J Am Chem Soc, 2017, 139: 2428–2434

    PubMed  CAS  Google Scholar 

  122. Tao S, Zhai L, Dinga Wonanke AD, Addicoat MA, Jiang Q, Jiang D. Nat Commun, 2020, 11: 1981

    PubMed  PubMed Central  CAS  Google Scholar 

  123. Han X, Xia Q, Huang J, Liu Y, Tan C, Cui Y. J Am Chem Soc, 2017, 139: 8693–8697

    PubMed  CAS  Google Scholar 

  124. Sun Q, Aguila B, Perman JA, Butts T, Xiao FS, Ma S. Chem, 2018, 4: 1726–1739

    CAS  Google Scholar 

  125. Du Y, Mao K, Kamakoti P, Wooler B, Cundy S, Li Q, Ravikovitch P, Calabro D. J Mater Chem A, 2013, 1: 13171–13178

    CAS  Google Scholar 

  126. Zhang G, Li X, Liao Q, Liu Y, Xi K, Huang W, Jia X. Nat Commun, 2018, 9: 2785

    PubMed  PubMed Central  Google Scholar 

  127. Chandra S, Kandambeth S, Biswal BP, Lukose B, Kunjir SM, Chaudhary M, Babarao R, Heine T, Banerjee R. J Am Chem Soc, 2013, 135: 17853–17861

    PubMed  CAS  Google Scholar 

  128. Mitra S, Sasmal HS, Kundu T, Kandambeth S, Illath K, Díaz Díaz D, Banerjee R. J Am Chem Soc, 2017, 139: 4513–4520

    PubMed  CAS  Google Scholar 

  129. Yusran Y, Guan X, Li H, Fang Q, Qiu S. Natl Sci Rev, 2019, 7: 170–190

    Google Scholar 

  130. Li XT, Zou J, Wang TH, Ma HC, Chen GJ, Dong YB. J Am Chem Soc, 2020, 142: 6521–6526

    PubMed  CAS  Google Scholar 

  131. Wang Y, Liu H, Pan Q, Wu C, Hao W, Xu J, Chen R, Liu J, Li Z, Zhao Y. J Am Chem Soc, 2020, 142: 5958–5963

    PubMed  CAS  Google Scholar 

  132. Guo X, Tian Y, Zhang M, Li Y, Wen R, Li X, Li X, Xue Y, Ma L, Xia C, Li S. Chem Mater, 2018, 30: 2299–2308

    CAS  Google Scholar 

  133. Wang P, Xu Q, Li Z, Jiang W, Jiang Q, Jiang D. Adv Mater, 2018, 30: 1801991

    Google Scholar 

  134. Jiang HL, Feng D, Liu TF, Li JR, Zhou HC. J Am Chem Soc, 2012, 134: 14690–14693

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21922502, 21674012) and Beijing Institute of Technology Research Fund Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Feng.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Sun, C. & Feng, X. Crystallinity and stability of covalent organic frameworks. Sci. China Chem. 63, 1367–1390 (2020). https://doi.org/10.1007/s11426-020-9836-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9836-x

Navigation