Skip to main content
Log in

On a Time-Dependent Nonholonomic Oscillator

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In this note, we compare the first integrals and exact solutions of equations of motion for scleronomic and rheonomic, and holonomic and nonholonomic oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Bates,, “Problems and Progress in Nonholonomic Reduction,” XXXIII Symposium on Mathematical Physics (Torn, 2001), Rep. Math. Phys., 49, 143–149 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  2. J. M. Bertrand,, “M\(\grave{\text e}\)moire sur quelques-unes des forms les plus simples que puissent pr\(\grave{\text e}\)senter les int\(\grave{\text e}\)grales des\(\grave{\text e}\)quations diff\(\grave{\text e}\)rentielles du mouvement d\(\acute{}\)un point mat\(\grave{\text e}\)riel,” J. Math. Pures Appl., 2, 113–140 (1857).

    Google Scholar 

  3. A. Bloch,, Nonholonomic Mechanics and Control, Vol. 24, Springer, Interdisciplinary Applied Mathematics, (2015).

    Book  Google Scholar 

  4. A. V. Borisov, I. S. Mamaev, and A. V. Tsiganov, “Nonholonomic Dynamics and Poisson Geometry,” Russian Math. Surveys, 69, 481–538 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  5. I. A. Bizyaev, A. V. Borisov, and I. S. Mamaev, “Exotic Dynamics of Nonholonomic Roller Racer with Periodic Control,” Regul. Chaot. Dyn., 23, 983–994 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  6. I. A. Bizyaev, A. V. Borisov, V. V. Kozlov, and I. S. Mamaev, “Fermi-Like Acceleration and Power-Law Energy Growth in Nonholonomic Systems,” Nonlinearity, 32, 3209–3233 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. V. Borisov and A. V. Tsiganov, “On Rheonomic Nonholonomic Deformations of the Euler Equations Proposed by Bilimovich,” Preprint arXiv:2002.07670, (2020).

    ADS  Google Scholar 

  8. A. V. Borisov, E. A. Mikishanina and A. V. Tsiganov, “On Inhomogeneous Nonholonomic Bilimovich System,” Preprint arXiv:2003.08577, (2020).

    ADS  Google Scholar 

  9. O. Bottema, “On the Small Vibrations of Non-Holonomic Systems,” Ind. Math., 11, 296–298 (1949).

    MATH  Google Scholar 

  10. M. D. Bustamante and P. Lynch, “Nonholonomic Noetherian Symmetries and Integrals of the Routh Sphere and the Chaplygin Ball,” Regul. Chaot. Dyn., 24, 511–524 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. F Cariñena., E. Martínez, and J. Fernández-Núñez, “Noether\(\acute{}\)s Theorem in Time-Dependent Lagrangian Mechanics,” Rep. Math. Phys., 31, 189–203 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  12. N. G. Chetaev, “On Gauss Principle,” Izv. Fiz.-Mat. Obshch. Kazan Univ., 6, 68–71 (1932-1933).

    Google Scholar 

  13. R. K. Colegrave and M. S. Abdalla,, “Invariants for the Time-Dependent Harmonic Oscillator. I,” J. Phys. A: Math. Gen., 16, 3805–3815 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  14. R. K. Colegrave, M. S. Abdalla and M. A. Mannan,, “Invariants for the Time-Dependent Harmonic Oscillator. II. Cubic and Quartic Invariants,” J. Phys. A: Math. Gen., 17, 1567–1571 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  15. G. Darboux, “Sur un probléme de mécanique,” Arch. Néerlandaises Sci., 6, 371–376 (1901).

    MATH  Google Scholar 

  16. L. P. Eisenhart, “Separable Systems of Stäckel,” Ann. Math., 35, 284–305 (1934).

    Article  MathSciNet  Google Scholar 

  17. V. P. Ermakov, “Second-Order Differential Equations, Conditions of Complete Integrability,” Univ. Izv. Kiev, 20, 1–25 (1880).

    Google Scholar 

  18. J. Grabowski, M. de León, J. C. Marrero, and D. M. de Diego, “Nonholonomic Constraints: a New Viewpoint,” J. Math. Phys., 50, (2009).

    Article  MathSciNet  Google Scholar 

  19. Yu. A. Grigoryev and A. V. Tsiganov, “Symbolic Software for Separation of Variables in the Hamilton-Jacobi Equation for the \(L\)-System,” Regul. Chaotic Dyn., 10, 413–422 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  20. Yu. A. Grigoryev, A. P. Sozonov, and A. V. Tsiganov, “Integrability of Nonholonomic Heisenberg Type Systems,” SIGMA, 12, 112 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  21. P. Guha,, The Role of the Jacobi Last Multiplier in Nonholonomic Systems and Locally Conformal Symplectic Structure, Diagana T., Toni B. (eds) Mathematical Structures and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham (2018).

    Book  Google Scholar 

  22. F. Fassò and N. Sansonetto, “Conservation of Energy and Momenta in Nonholonomic Systems with Affine Constraints,” Regul. Chaotic Dyn., 20, 449–462 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. de León and D. M. de Diego, “On the Geometry of Non-Holonomic Lagrangian Systems,” J. Math. Phys., 37, 3389–3414 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  24. M. de León, J. C. Marrero, and D. M. de Diego, “Linear Almost Poisson Structures and Hamilton-Jacobi Equation. Applications to Nonholonomic Mechanics,” J. Geom. Mech., 2, 159–198 (2010).

    Article  MathSciNet  Google Scholar 

  25. H. R. Lewis, “Classical and Quantum Systems with Time Dependent Harmonic Oscillator Type Hamiltonians,” Phys. Rev. Lett., 18, 510–512 (1967).

    Article  ADS  Google Scholar 

  26. H. R. Lewis and W. B. Riesenfeld, “An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field,” J. Math. Phys., 10, 1458–1473 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  27. J. R. Ray and J. L. Reid, “More Exact Invariants for the Time-Dependent Harmonic Oscillator,” Phys. Lett. A, 71, 317–318 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  28. J. L. Reid and J. R. Ray, “Ermakov Systems, Nonlinear Superposition, and Solutions of Nonlinear Equations of Motion,” J. Math. Phys., 21, 1583–1587 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  29. J. L. Reid and J. R. Ray, “Invariants for Forced Time-Dependent Oscillators and Generalizations,” Phys. Rev. A., 26, 1042–1047 (1982).

    Article  ADS  Google Scholar 

  30. P. M. Rios and J. Koiller, Non-Holonomic Systems with Symmetry Allowing a Conformally Symplectic Reduction, New Advances in Celestial Mechanics and Hamiltonian Systems, Springer, US (2004).

    Google Scholar 

  31. R. M. Rosenberg, Analytical Dynamics of Discrete Systems, Plenum Press, New York (1977).

    Book  Google Scholar 

  32. V. V. Rumyantsev,, “The Dynamics of Rheonomic Lagrangian Systems with Constraints,” J. Applied Math. Mech., 48, 380–387 (1984).

    Article  MathSciNet  Google Scholar 

  33. Ya. V. Tatarinov, “Consequences of Nonintegrable Perturbation of the Integrable Constraints: Model Problems of Low Dimensionality,” J. Appl. Math. Mech., 51, 579–586 (1987).

    Article  MathSciNet  Google Scholar 

  34. B. Vujanovic and S. E. Jones, Variational Methods in Nonconservative Phenomena, Academic Press, Boston (1989).

    MATH  Google Scholar 

Download references

Funding

This work of A. V. Tsiganov was supported by the Russian Science Foundation (project no. 19-71-30012) and performed at the Steklov Mathematical Institute of the Russian Academy of Sciences. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsiganov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiganov, A.V. On a Time-Dependent Nonholonomic Oscillator. Russ. J. Math. Phys. 27, 399–409 (2020). https://doi.org/10.1134/S1061920820030115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920820030115

Navigation