Skip to main content
Log in

Catalytic action of carbon nanotubes on ammonium perchlorate thermal behavior

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work focuses on the catalytic activity of ammonium perchlorate (AP) through the encapsulation technique using the single-walled carbon nanotubes (SWCNTs) and the multi-walled Carbon Nanotubes (MWCNTs). Encapsulation process took place utilizing a revised approach of the fast-crash solvent–antisolvent method. Particle shape and size were characterized using EDX and SEM, while the thermal behavior of AP/SWCNTs and AP/MWCNTs composite particles was evaluated using DSC together with TGA. The TGA data were applied for quantifying the AP activation energy using the Kissinger method and was confirmed through the Kissinger–Akahira–Sunose (KAS) method. The obtained encapsulated AP showed a significant reduction in the decomposition temperature and a major increase in the overall heat release of AP. Also, kinetics study data showed that encapsulated AP possessed lower activation energy in comparison to that of the pure AP. These results established that carbon nanotubes (CNTs) could be a promising innovative catalyst that has a straightforward impact on the ammonium perchlorate thermal activity, thus affects the thermal behavior and performance of the rocket propellant formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mehilal SJ, Nandagopal S, Singh PP, Radhakrishnan KK, Bhattacharya B (2009) Size and shape of ammonium perchlorate and their influence on properties of composite propellant. Def Sci J 59(3):294–299

    Google Scholar 

  2. Chen L, Li L, Li G (2008) Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloys Compd 464(1–2):532–536

    CAS  Google Scholar 

  3. Guirao C, Williams F (1971) A model for ammonium perchlorate deflagration between 20 and 100 atmospheres. AIAA J 9(7):1345–1356

    CAS  Google Scholar 

  4. Aziz A, Ali WKW (2012) Effect of oxidizer-fuel mixture ratio to the pressure exponent of ammonium perchlorate based composite propellant. Appl Mech Mater 110–116:1380–1386

    Google Scholar 

  5. Rahimi R, Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y (2012) Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol 217:330–339

    Google Scholar 

  6. Lang AJ, Vyazovkin S (2006) Effect of pressure and sample type on decomposition of ammonium perchlorate. Combust Flame 145(4):779–790

    CAS  Google Scholar 

  7. Liu L, Li F, Tan L, Ming L, Yi Y (2004) Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Prop Explos Pyrotech 29(1):34–38

    Google Scholar 

  8. Bircumshaw LL, Newman BH (1954) The thermal decomposition of ammonium perchlorate. I. Introduction, experimental, analysis of gaseous products, and thermal decomposition experiments. Proc R Soc Lond A 227:115–132

    CAS  Google Scholar 

  9. Jacobs PWM, Russell-Jones A (1968) Sublimation of ammonium perchlorate. J Phys Chem 78(1):202–207

    Google Scholar 

  10. Politzer P, Lane P (1998) Energetics of ammonium perchlorate decomposition steps. J Mol Struct (Thoechem) 454(2–3):229–235

    CAS  Google Scholar 

  11. Jacobs PWM, Whitehead HM (1969) Decomposition and combustion of ammonium perchlorate. Chem Rev 69(4):551–590

    CAS  Google Scholar 

  12. Galwey AK, Jacobs PWM (1960) The thermal decomposition of ammonium perchlorate at low temperatures. Proc R Soc Lond A 254:455–469

    CAS  Google Scholar 

  13. Keenan AG, Siegmund RF (1969) Thermal decomposition of ammonium perchlorate. Q Rev Chem Soc 3:430–452

    Google Scholar 

  14. Guillory WA, King M (1970) Thermal decomposition of ammonium perchlorate. AIAA J 8(6):1134–1136

    CAS  Google Scholar 

  15. Chandru RA, Patra S, Oommen C, Munichandraiah N, Raghunandan BN (2012) Exceptional activity of mesoporous β-MnO2 in the catalytic thermal sensitization of ammonium perchlorate. J Mater Chem 22(14):6536–6538

    CAS  Google Scholar 

  16. Kubota N (2015) Propellants and explosives: thermochemical aspects of combustion. Wiley, Weinheim

    Google Scholar 

  17. Turner AJ (2008) Rocket and spacecraft propulsion: principles, practice and new developments. Springer Science Business Media, Berlin

    Google Scholar 

  18. Chaturvedi S, Dave PN (2012) Nano-metal oxide: potential catalyst on thermal decomposition of ammonium perchlorate. J Exp Nanosci 7(2):205–231

    CAS  Google Scholar 

  19. Sutton GP, Biblarz O (2001) Rocket propulsion elements. Wiley, Weinheim

    Google Scholar 

  20. Hu Y, Tao B, Shang F, Zhou M, Hao D, Fan R, Xia D, Yang Y, Pang A, Lin K (2020) Thermal decomposition of ammonium perchlorate over perovskite catalysts: catalytic decomposition behavior, mechanism and application. J Appl Surf Sci 513:145849

    CAS  Google Scholar 

  21. Deng P, Wang H, Yang X, Ren H, Jiao Q (2020) Thermal decomposition and combustion performance of high-energy ammonium perchlorate-based molecular perovskite. J Alloys Compd 827:154257

    CAS  Google Scholar 

  22. Juibari NM, Tarighi S (2020) Metal-organic framework-derived nanocomposite metal oxides with enhanced catalytic performance in thermal decomposition of ammonium perchlorate. J Alloys Compd 832:154837

    CAS  Google Scholar 

  23. Lu Y, Chen J, Wang R, Xu P, Zhang X, Gao B, Guo C, Yang G (2018) Bio-inspired Cu-alginate to smartly enhance safety performance and the thermal decomposition of ammonium perchlorate. J Appl Surf Sci 470:269–275

    Google Scholar 

  24. Hu Y, Yang S, Tao B, Liu X, Lin K, Yang Y, Fan R, Xia D, Hao D (2019) Catalytic decomposition of ammonium perchlorate on hollow mesoporous CuO microspheres. J Vac 159:105–111

    CAS  Google Scholar 

  25. Zhang M, Zhao F, Yang Y, An T, Qu W, Li H, Zhang J, Li N (2019) Catalytic activity of ferrates (NiFe2O4, ZnFe2O4 and CoFe2O4) on the thermal decomposition of ammonium perchlorate. Prop Explos Pyrotech 44:1–10

    Google Scholar 

  26. Liu J, Qiu H, Han J, Yang L (2019) Synthesis of energetic complexes [Co(en)(H2BTI)2]2.en, [Cu2(en)2(HBTI)2]2 and catalytic study on thermal decomposition of ammonium perchlorate. Prop Explos Pyrotech 44:816–820

    CAS  Google Scholar 

  27. Arroyo JL, Povea P, Faundez R, Camarada MB, Cerda-Cavieres C, Abarca G, Manriquez JM, Morales-Verdejo C (2019) Influence iron-iron distance on the thermal decomposition of ammonium perchlorate New catalysts for the highly efficient combustion of solid rocket propellant. J Organomet Chem 905:121020

    Google Scholar 

  28. Xiao X, Zhang Z, Cai L, Li Y, Yan Z, Wang Y (2019) The excellent catalytic activity for thermal decomposition of ammonium perchlorate using porous CuCo2O4 synthesized by template-free solution combustion method. J Alloys Compd 797:548–557

    CAS  Google Scholar 

  29. Zheng Z, Zhang W, Chen L, Xiong W, Zeng G, Liu J, Wu R, Wang J, Ye J, Zhu J (2019) In-situ synthesis of MnCo2O4.5 nanosheets on reduced graphene oxide for a great promotion in the thermal decomposition of ammonium perchlorate. J Appl Surf Sci 483:496–505

    CAS  Google Scholar 

  30. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    CAS  Google Scholar 

  31. Zhao X, Zhao T, Peng X, Hu J, Yang W (2019) Catalyst effect on the preparation of single-walled carbon nanotubes by a modified arc discharge. Fuller Nanotub Carbon Nanostruct 27(1):52–57

    CAS  Google Scholar 

  32. Yadav MD, Dasgupta K, Patwardhan AW, Kaushal A, Joshi JB (2019) Kinetic study of single-walled carbon nanotube synthesis. Chem Eng Sci 196:91–103

    CAS  Google Scholar 

  33. Cassell AM, Raymakers JA, Kong J, Dai H (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103(31):6484–6492

    CAS  Google Scholar 

  34. Alstrup I, Tavares MT (1992) The kinetics of carbon formation from CH4+H2 on a silica-supported nickel catalyst. J Catal 135(1):147–155

    CAS  Google Scholar 

  35. Amama PB, Zemlyanov D, Sundarakannan B, Katiyar RS, Fisher TS (2008) XPS and Raman characterization of single-walled carbon nanotubes grown from pretreated Fe2O3 nanoparticles. J Phys D 41:16

    Google Scholar 

  36. Anisimov AS (2010) Mechanistic investigations of single-walled carbon nanotube synthesis by ferrocene vapor decomposition in carbon monoxide. Carbon 48(2):380–388

    CAS  Google Scholar 

  37. Yakobson BI, Smalley RE (1997) Fullerene nanotubes: C 1,000,000 and beyond: some unusual new molecules—long, hollow fibers with tantalizing electronic and mechanical properties—have joined diamonds and graphite in the carbon family. Am Sci 85(4):324–337

    Google Scholar 

  38. Rinzler TD, Hafner JH, Nikolaev P, Nordlander P, Colbert DT, Smalley RE, Lou L, Kim SG (1995) Unraveling nanotubes: field emission from an atomic wire. Science 269:1550

    CAS  PubMed  Google Scholar 

  39. Tombler TW, Zhou C, Kong J, Dai H (2000) Gating individual nanotubes and crosses with scanning probes. Appl Phys Lett 76:2412

    CAS  Google Scholar 

  40. Elbasuney S, Gobara M, Yehia M (2019) Ferrite nanoparticles: synthesis, characterization, and catalytic activity evaluation for solid rocket propulsion systems. J Inorg Organomet Polym Mater 29:721–729

    CAS  Google Scholar 

  41. Elbasuney S, Yehia M (2019) Thermal decomposition of ammonium perchlorate catalyzed with CuO nanoparticles. Def Technol 15(6):868–874

    Google Scholar 

  42. Memon NK, McBain AW, Son SF (2016) Graphene oxide ammonium perchlorate composite material for use in solid propellants. J Propuls Power 23:3

    Google Scholar 

  43. Reese DA, Son SF, Groven LJ (2012) Preparation and characterization of energetic crystals with nanoparticle inclusions. Prop Explos Pyrotech 37(6):635–638

    CAS  Google Scholar 

  44. Yehia M, Mostafa HE, Wafy TZ, Abdelhafiz M (2019) Thermal behaviour of MWCNT/ammonium perchlorate particles. IOP Conf Ser Mater Sci Eng 610:012062

    CAS  Google Scholar 

  45. Khawam A, Flanagan DR (2006) Basics and applications of solid-state kinetics: a pharmaceutical perspective. J Pharm Sci 95(3):472–498

    CAS  PubMed  Google Scholar 

  46. Trache D, Abdelaziz A, Siouani B (2017) A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim 128(1):335–348

    CAS  Google Scholar 

  47. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim acta 520(1–2):1–19

    CAS  Google Scholar 

  48. Trache D, Khimeche K, Mezroua A, Benziane M (2016) Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm. Anal Calorim 124(3):1485–1496

    CAS  Google Scholar 

  49. Akahira T (1971) Trans joint convention of four electrical institutes. Res Rep Chiba Inst Technol 16:22–31

    Google Scholar 

  50. Blaine RL, Kissinger HE (2012) Homer Kissinger and the Kissinger equation. Thermochim Acta 540:1–6

    CAS  Google Scholar 

  51. Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16(22):31

    Google Scholar 

  52. Yehia M, Mostafa HE, Wafy TZ, Abdelhafiz M (2019) Thermal behaviour of MWCNT/ammonium perchlorate particles. IOP Conf Ser Mater Sci Eng 610:1

    Google Scholar 

  53. Ayoman E, Hosseini SG (2015) Synthesis of CuO nanopowders by dry high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim 123:1213–1224

    Google Scholar 

  54. Hosseini SG, Ayoman E (2016) Synthesis of α-Fe2O3 nanoparticles by dry high-energy ball-milling method and investigation of their catalytic activity. J Therm Anal Calorim 128:915–924

    Google Scholar 

Download references

Acknowledgements

This work has been conducted at the Energetic Materials Research Center in cooperation with the Chemical Engineering Department, School of Chemical Engineering, Military Technical College, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Abdelhafiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhafiz, M., Yehia, M., Mostafa, H.E. et al. Catalytic action of carbon nanotubes on ammonium perchlorate thermal behavior. Reac Kinet Mech Cat 131, 353–366 (2020). https://doi.org/10.1007/s11144-020-01848-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01848-y

Keywords

Navigation