Skip to main content
Log in

Pollen release in the Proteaceae

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Pollen dispersal is the step in higher plant mating systems over which the parent plant has the least control as it is dependent on the vagaries of weather conditions (anemophily) or animal behaviour (animal pollinator activity). While many families have passive release from the anther the Proteaceae has a diversity of pollen dispersal methods. Flowers from a range of species in the Proteaceae, covering the majority of genera from each of the four main subfamilies, were examined to determine how pollen is dispersed and to gain an overall view of how male function varies within the family. This provides a basis for predicting the degree of the six likely fates of pollen released in this family. Only one group (subfamily Persoonioideae) and four genera in one other subfamily (Proteoideae) dispense pollen directly from the anthers onto a flower visitor. Five genera in the Proteoideae have explosive pollen release, while Symphionema may require vibration to release the pollen. All the remaining Proteoideae genera, the single species of Bellendenoideae, and all genera of the Grevilleoideae (except Sphalmium) have a pollen presenter where pollen is dispersed from the style of the flower. Ancestral Proteaceae were likely to have been insect pollinated and had relatively small flowers. Taxa with explosive pollen release may have evolved early in the family and may have been more abundant early in the fossil record. However, the taxa with pollen presenters became much more abundant throughout the Tertiary when many developed robust gynoecia that can accommodate larger vertebrate pollinators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aleman M, Figueroa-Fleming T, Etcheverry A, Suhring S, Ortega-Baes P (2014) The explosive pollination mechanism in Papilionoideae (Leguminosae): an analysis with three Desmodium species. Pl Syst Evol 300:177–186. https://doi.org/10.1007/s00606-013-0869-8

    Article  Google Scholar 

  • Armbruster WS, Hansen TF, Pelarbon C, Perez-Barrales R, Maad J (2009) The adaptive accuracy of flowers: measurement and microevolutionary patterns. Ann Bot (Oxford) 103:1529–1545

    Google Scholar 

  • Barreda VD, Palazzesi L, Olivero EB (2019) When flowering plants ruled Antarctica: evidence from Cretaceous pollen grains. New Phytol 223:1023–1030. https://doi.org/10.1111/nph.15823

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt P, Weston PH (1996) The pollination ecology of Persoonia (Proteaceae) in eastern Australia. Telopea 6:775–804. https://doi.org/10.7751/telopea19963035

    Article  Google Scholar 

  • Bernhardt P, Camilo G, Weston PH (2019) Shaken vs scraped: floral presentation contributes to pollinator guild segregation in co-blooming Symphionema montanum and Isopogon anemonifolius (Proteaceae). The Garden’s Bul Singapore 71:377–396. https://doi.org/10.26492/gbs71(2).2019-05

    Article  Google Scholar 

  • Carolin R (1961) Pollination of the Proteaceae. Austral Mus Mag 13:371–374

    Google Scholar 

  • Carpenter RJ, Macphail MK, Jordan GJ, Hill RS (2015) Fossil evidence for open, Proteaceae-dominated heathlands and fire in the late Cretaceous of Australia. Amer J Bot 102:2092–2107. https://doi.org/10.3732/ajb.1500343

    Article  Google Scholar 

  • Castellanos MC, Wilson P, Keller SJ, Wolfe AD, Thompson JD (2006) Anther evolution: pollen presentation strategies when pollinators differ. Amer Naturalist 167:288–296

    Google Scholar 

  • Christophel DC (1984) Early tertiary Proteaceae: the first floral evidence for the Musgraveinae. Austral J Bot 32:177–186

    Google Scholar 

  • Churchill DM, Christensen P (1970) Observations on pollen harvesting by brush-tounged lorikeets. Austral J Zool 18:427–437

    Google Scholar 

  • Claßen-Brockoff R (2007) Floral construction and pollination biology in the Lamiaceae. Ann Bot (Oxford) 100:359–360. https://doi.org/10.1093/aob/mcm157

    Article  Google Scholar 

  • Crisp MD, Cook LG (2011) Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol 192:997–1009. https://doi.org/10.1111/j.1469-8137.2011.03862.x

    Article  CAS  PubMed  Google Scholar 

  • Crisp MD, Weston PH (1995) Alloxylon. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 383–386

    Google Scholar 

  • Crisp MD, Cook LG, Bowman DMJS, Cosgrove M, Isagi Y, Sakaguchi S (2019) Turnover of southern cypresses in the post-Gondwanan world: extinction, transoceanic dispersal, adaptation and rediversification. New Phytol 221:2308–2319. https://doi.org/10.1111/nph.15561

    Article  PubMed  Google Scholar 

  • Cruden RW (2000) Pollen grains, Why so many? Pl Syst Evol 222:143–165

    Google Scholar 

  • Dellinger AS, Penneys DS, Staedler YM, Fragner L, Weckwerth W, Schonenberger J (2014) A specialized bird pollination system with a bellows mechanism for pollen transfer and staminal food body rewards. Curr Biol 24:1615–1619

    CAS  PubMed  Google Scholar 

  • Dettmann ME, Jarzen DM (1998) The early history of the Proteaceae in Australia: the pollen record. Austral Syst Bot 11:401–438

    Google Scholar 

  • Douglas AW (1995a) Morphological features. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 6–14

    Google Scholar 

  • Douglas AW (1995b) Morphological features. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 14–19

    Google Scholar 

  • Douglas AW (1997) The developmental basis of morphological diversification and synorganizisation in flowers of Conospermeae (Stirlingia and Conosperminae: Proteaceae). Int J Pl Sci 158(Suppl 6):S13–S48

    Google Scholar 

  • Douglas AW, Hyland BPM (1995) Eidothea. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 127–129

    Google Scholar 

  • Driskell AC, Christadis L (2004) Phylogeny and evolution of the Australo-Papuan honeyeaters (Passeriformes, Meliphagidae). Molec Phylogen Evol 31:943–960

    CAS  Google Scholar 

  • Edwards J, Whitaker D, Klionsky S, Laskowski MJ (2005) A record breaking pollen catapult. Nature 435:164

    CAS  PubMed  Google Scholar 

  • Erbar C, Leins P (1995) Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales-Asterales- complex. Flora 190:323–338

    Google Scholar 

  • Fleurat-Lessard P, Millet B (1984) Ultrastructural features of cortical parenchymal cells (‘motor cells’) in stamen filaments of Berberis canadensis Mill. and tertiary pulvini of Mimosa pudica L. J Exp Bot 35:1332–1341

    Google Scholar 

  • Foreman DB (1995a) Petrophile. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 149–193

    Google Scholar 

  • Foreman DB (1995b) Isopogon. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 194–223

    Google Scholar 

  • Foreman DB (1995c) Helicia. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 393–399

    Google Scholar 

  • Foreman DB (1995d) Triunia. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 404–407

    Google Scholar 

  • Foster CSP, Sauquet H, van der Merwe M, McPherson H, Rossetto M, Ho SYW (2017) Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale. Syst Biol 66:338–351. https://doi.org/10.1093/sysbio/syw086

    Article  PubMed  Google Scholar 

  • Gai C, Galloway LF (2011) Do dichogamy and herkogamy reduce sexual interference in a self-compatible species? Funct Ecol 25:271–278

    Google Scholar 

  • Groom PK, Lamont BB (2015) Plant life of southwestern Australia. De Gruyter, Netherlands

    Google Scholar 

  • Harder LD (2000) Pollen dispersal and the floral diversity of monocotyledons. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 243–253

    Google Scholar 

  • He T, Lamont BB, Fogliani B (2016) Pre-Gondwanan-breakup origin of Beauprea (Proteaceae) explains its historical presence in New Caledonia and New Zealand. Sci Advance 2:e1501648. https://doi.org/10.1126/sciadv.1501648

    Article  Google Scholar 

  • Hewson HJ (1995) Sphalmium. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 342–343

    Google Scholar 

  • Hill RS (1994) The history of selected taxa. In: Hill RS (ed) History of Australian vegetation: cretaceous to recent. Cambridge University Press, Cambridge, pp 390–420

    Google Scholar 

  • Houston TF (1989) Leioproctus bees associated with Western Australian smoke bushes (Conospermum species) and their adaptation for foraging and concealment (Hymenoptera: Colletidae: Paracolletidae. Rec W Austral Mus 14:275–292

    Google Scholar 

  • Houston TF (2000) Native bees on wildflowers in Western Australia: a synopsis of native bee visitation of wildflowers in Western Australia based on the bee collection of the Western Australian Museum. Western Australian Insect Study Society, Perth, WA

    Google Scholar 

  • Howell GJ, Slater AT, Knox RB (1993) Secondary pollen presentation in angiosperms and its biological significance. Austral J Bot 41:417–438

    Google Scholar 

  • Hyland BPM (1995) Carnarvonia. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 343–345

    Google Scholar 

  • Itzstein-Davey F (2007) Changes in the abundance and diversity of Proteaceae in south-western Australia: a review of an integrated palaeoenvironmental study. Geogr Res 45:43–53

    Google Scholar 

  • Johnson LAS, Briggs BG (1963) Evolution in the Proteaceae. Austral J Bot 11:21–61

    Google Scholar 

  • Johnson LAS, Briggs BG (1975) On the Proteaceae—the evolution and classification of a southern family. Bot J Linn Soc 70:83–182

    Google Scholar 

  • Kearns CA, Inouye DW (1997) Pollinators, flowering plants, and conservation biology. Bioscience 47:297–307

    Google Scholar 

  • Ladd PG (1994) Pollen presenters in the flowering plants: form and function. Bot J Linn Soc 115:165–195

    Google Scholar 

  • Ladd PG, Connell SW (1994) Andromonoecy and fruit set in three genera of the Proteaceae. Bot J Linn Soc 116:77–88

    Google Scholar 

  • Ladd PG, Donaldson JS (1993) Pollen presenters in the South African flora. S African J Bot 59:465–477

    Google Scholar 

  • Ladd PG, Wooller SJ (1997) Explaining variation in pollination and seed set in an andromonoecious genus of the Proteaceae. Acta Hort 437:115–120

    Google Scholar 

  • Ladd PG, Alkema AJ, Thompson GJ (1996) Pollen presenter morphology and anatomy in Banksia and Dryandra. Austral J Bot 44:447–471

    Google Scholar 

  • Ladd PG, Nanni I, Thomson GJ (1998) Unique stigmatic structure in three genera in the Proteaceae. Austral J Bot 46:479–488

    Google Scholar 

  • Lamont B (1982) The reproductive biology of Grevillea leucopteris (Proteaceae), including reference to its glandular hairs and colonizing potential. Flora 172:1–20

    Google Scholar 

  • Lamont B (1985) The significance of flower colour change in eight co-occurring shrub species. Bot J Linn Soc 90:145–155

    Google Scholar 

  • Lloyd DG, Yates JMA (1982) Intrasexual selection and the segregation of pollen and stigmas in hermaphrodite plants, exemplified by Wahlenbergia albomarginata (Campanulaceae). Evolution 36:903–913

    PubMed  Google Scholar 

  • Makinson RO (2000) Grevillea. In: Wilson AJG (ed) Flora of Australia, vol. 17A. CSIRO, Melbourne, pp 1–460

    Google Scholar 

  • Martin ARH (1995) Palaeogene proteaceous pollen and phylogeny. Alcheringa 19:27–40. https://doi.org/10.1080/03115519508619096

    Article  Google Scholar 

  • Mast AR, Milton EF, Jones EH, Barker RM, Barker WR, Weston PH (2012) Time-calibrated phylogeny of the woody Australian genus Hakea (Proteaceae) supports multiple origins of insect-pollination among bird-pollinated ancestors. Amer J Bot 99:472–487. https://doi.org/10.3732/ajb.1100420

    Article  Google Scholar 

  • Mast AR, Olde PM, Makinson RO, Jones E, Kubes A, Miller ET, Weston PH (2015) Paraphyly changes understanding of timing and tempo of diversification in subtribe Hakeinae (Proteaceae), a giant Australian plant radiation. Amer J Bot 102:1634–1646. https://doi.org/10.3732/ajb.1500195

    Article  CAS  Google Scholar 

  • McFarland DC (1985) Flowering biology and phenology of Banksia integrifolia and B. spinulosa (Proteaceae) in New England National Park, NSW. Austral J Bot 33:305–314

    Google Scholar 

  • McGowran B, Holdgate GR, Li Q, Gallagher SJ (2004) Cenozoic stratigraphic succession in southeastern Australia. Austral J Earth Sci 51:459–496. https://doi.org/10.1111/j.1400-0952.2004.01078.x

    Article  Google Scholar 

  • Milne LA (1998) Tertiary palynology: beaupreaidites and new Conospermeae (Proteoideae) affiliates. Austral Syst Bot 11:553–603. https://doi.org/10.1071/sb97013

    Article  Google Scholar 

  • Mitchell N, Lewis PO, Moriarty Lemmon E, Lemmon AR, Holsinger KE (2017) Anchored phylogenomic improves the resolution of evolutionary relationships in the rapid radiation of Protea L. Amer J Bot 104:102–115. https://doi.org/10.3732/ajb.1600227

    Article  CAS  Google Scholar 

  • Nyman Y (1992) Reproduction in Campanula afra (Campanulaceae): mating system and the role of the pollen collecting hairs. Pl Syst Evol 183:33–41

    Google Scholar 

  • Onstein RE, Jordan GJ, Sauquet H, Weston PH, Bouchenak-Khelladi Y, Carpenter RJ, Linder HP (2016) Evolutionary radiations of Proteaceae are triggered by the interaction between traits and climate in open habitats. Global Ecol Biogeogr 25:1239–1251. https://doi.org/10.1111/geb.12481

    Article  Google Scholar 

  • Perez F, Arroyo MTK, Medel R, Hershkovitz MA (2006) Ancestral reconstruction of flower morphology and pollination systems in Schizanthus (Solanaceae). Amer J Bot 93:1029–1038

    Google Scholar 

  • Popic TJ, Wardle GM, Davila YC (2013) Flower-visitor networks only partially predict the function of pollen transport by bees. Austral Ecol 38:76–86

    Google Scholar 

  • Rebelo T (1995) Proteas. A field guide to the proteas of South Africa. Fernwood Press, Vlaeberg

    Google Scholar 

  • Reith M, Baumann GA, Claben-Brockoff R, Speck T (2007) New insights into the functional morphology of the lever mechanism of Salvia pratensis (Lamiaceae). Ann Bot (Oxford) 100:393–499

    Google Scholar 

  • Rourke JP (1982) An illustrated account of Mimetes Salisbury and Orothamnus Pappe, two notable cape genera of the Proteaceae. Tiyan Publications, Cape Town

    Google Scholar 

  • Rourke JP (1984) Vexatorella Rourke, a new genus of the Proteaceae from southern Africa. J S African Bot 50:373–391

    Google Scholar 

  • Rye BL, Hislop M (2005) A taxonomic update of Petrophile sect. Arthostigma (Proteaceae). Nuytsia 15:457–483

    Google Scholar 

  • Sauquet H, Weston PH, Anderson CL, Barker NP, Cantrill DJ, Mast AR, Savolainen V (2009) Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proc Natl Acad Sci USA 106:221–225. https://doi.org/10.1073/pnas.0805607106

    Article  PubMed  Google Scholar 

  • Sedgley M, Sierp MA, Wallwork MA, Fuss AM, Theile K (1993) Pollen presenter and pollen morphology of Banksia L.f. (Proteaceae). Austral J Bot 41:439–464

    Google Scholar 

  • Steenhuisen S-L, Johnson SD (2012) Evidence for beetle pollination in African grassland sugarbushes (Protea: Proteaceae). Pl Syst Evol 298:857–869. https://doi.org/10.1007/s00606-012-0589-5

    Article  Google Scholar 

  • Tassi F (1898) Le Proteacee, in specie dello Stenocarpus sinuatus Endl. (Studio anatomo-morphologico comparitivo). Bull Laborat Orto Bot Univ Sienna 1:67–134

    Google Scholar 

  • Tur C, Saez A, Travest A, Aizen MA (2016) Evaluating the effects of pollinator interactions using pollen transfer networks: evidence of widespread facilitation in south Andean plant communities. Ecol Lett 19:576–586

    CAS  PubMed  Google Scholar 

  • van der Niet T, Johnson SD (2012) Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol Evol 27:3563–361

    Google Scholar 

  • Venkata Rao C (1971) Proteaceae. Botanical monograph, vol. 6. Council of Scientific and Industrial Research, New Delhi

  • Virot R (1968) Flore de la Nouvelle-Calédonie et Depéndancies, Protéacées, vol. 2. Muséum National d’Histoire Naturalle, Paris

    Google Scholar 

  • Wallace HM, Maynard GV, Trueman SJ (2002) Insect flower visitors, foraging behavior and their effectiveness as pollinators of Persoonia virgata R.Br. (Proteaceae). Austral J Entomol 41:55–59

    Google Scholar 

  • Webb CJ, Lloyd DG (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy, New Zealand. J Bot 24:163–178

    Google Scholar 

  • Weber UK, Nuismer SL, Espíndola A (2020) Patterns of floral morphology in relation to climate and floral visitors. Ann Bot (Oxford) 125:433–445

    Google Scholar 

  • Welsford MR, Hobbhahn N, Midgley JJ, Johnson SD (2015) Floral trait evolution associated with shifts between insect and wind pollination in the dioecious genus Leucadendron (Proteaceae). Evolution 70:126–139. https://doi.org/10.1111/evo.12821

    Article  PubMed  Google Scholar 

  • Wester P, Claßen-Brockhoff R (2007) Floral diversity and pollen transfer mechanisms in bird-pollinated Salvia species. Ann Bot (Oxfrord) 100:401–421

    Google Scholar 

  • Weston PH (1995a) Placospermum. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 47–49

    Google Scholar 

  • Weston PH (1995b) Acidonia. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 49–50

    Google Scholar 

  • Weston PH (1995c) Bellendenoideae. In: Orchard AE (ed) Flora of Australia, vol. 16. CSIRO, Melbourne, pp 125–127

    Google Scholar 

  • Weston PH, Barker NP (2006) A new suprageneric classification of the Proteaceae, with an annotated checklist of genera. Telopea 11:314–344

    Google Scholar 

  • Wrigley JW, Fagg M (1989) Banksias, waratahs and grevilleas and all other plants in the Australian Proteaceae family. Harper Collins publishing, North Ryde

    Google Scholar 

  • Ye Q, Bunn E, Dixon KW (2012) A ballistic pollen dispersal system influences pollination success and fruit-set pattern in pollinator-excluded environments for the endangered Synaphea stenoloba (Proteaceae). Bot J Linn Soc 170:59–68

    Google Scholar 

  • Yeo PF (1993) Secondary pollen presentation: form, function and evolution. Springer- Verlag, Wien

    Google Scholar 

  • Ying-Ze X, Li-Bing J, Zhang C, Huang S-Q (2020) Color-matching between pollen and corolla: hiding pollen via visual crypsis. J Ecol. https://doi.org/10.1111/nph.16012

    Article  Google Scholar 

  • Zhang B, Claßen-Bockhoff R, Zhang Z-Q, Sun S, Luo Y-J, Li Q-J (2011) Functional implications of the stamina lever mechanism in Salvia cyclostegia (Lamiaceae). Ann Bot (Oxford) 107:621–628

    Google Scholar 

Download references

Acknowledgements

We thank the South African National Botanical Institute and Kirstenbosch Botanic gardens for access to living material over a number of years and Kew, Bolus and Compton Herbaria for access to preserved material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G. Ladd.

Additional information

Handling Editor: Kester Bull-Hereñu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 154 kb)

Supplementary material 2 (PPTX 23001 kb)

Information on Electronic Supplementary Materials

Information on Electronic Supplementary Materials

Online Resource 1. Table listing species that were examined and the source of the material.

Online Resource 2. Video showing Stirlingia latifolia anthers exploding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladd, P.G., Bowen, B.J. Pollen release in the Proteaceae. Plant Syst Evol 306, 81 (2020). https://doi.org/10.1007/s00606-020-01707-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-020-01707-2

Keywords

Navigation