Skip to main content
Log in

Microscopic Investigation of High-Temperature Oxidation of hcp-ZrAl2

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The high-temperature oxidation of ZrAl2 upon exposure to pure O2 at 800–950 °C was studied in terms of the oxidation kinetics and the formation mechanism of the oxide layer. The alloy followed parabolic oxidation kinetics, and the activation energy of oxidation was 239 ± 14 kJ/mol. During the early stages of oxidation below 850 °C, a single-layer oxide formed due to the crystallization of the initially formed amorphous oxide layer. A multilayer oxide structure developed at higher temperatures, due to the slightly higher affinity of oxygen for Zr than for Al and the oxidation-induced compositional changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.H. Kung, Transition metal oxides: surface chemistry and catalysis, Elsevier, 1989.

  2. V. Fiorentini, G. Gulleri, Theoretical evaluation of zirconia and hafnia as gate oxides for Si microelectronics, Physical review letters, 89, 266101 (2002).

    Article  Google Scholar 

  3. Y. Wang, X. Wang, K. Wu, F. Wang, Role of Al18B4O33 Whisker in MAO Process of Mg Matrix Composite and Protective Properties of the Oxidation Coating, Journal of Materials Science & Technology, 29, 267 (2013).

    Article  Google Scholar 

  4. D. Kim, S.-L. Shang, Z. Li, B. Gleeson, Z.-K. Liu, Effects of Hf, Y, and Zr on Alumina Scale Growth on NiAlCr and NiAlPt Alloys, Oxidation of Metals, 92, 303 (2019).

    Article  CAS  Google Scholar 

  5. K. Weller, Z.M. Wang, L.P.H. Jeurgens, E.J. Mittemeijer, Oxidation kinetics of amorphous AlxZr1 − x alloys, Acta Materialia, 103, 311 (2016).

    Article  CAS  Google Scholar 

  6. Y. Xu, L.P.H. Jeurgens, Y. Huang, et al., Effect of structural order on oxidation kinetics and oxide phase evolution of Al–Zr alloys, Corrosion Science, 165, 108407 (2020).

    Article  CAS  Google Scholar 

  7. E.F. Ibrahim, B.A. Cheadle, Development of Zirconium Alloys for Pressure Tubes in Candu Reactors, Canadian Metallurgical Quarterly, 24, 273 (1985).

    Article  CAS  Google Scholar 

  8. J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery, Chemical Society Reviews, 39, 656 (2010).

    Article  CAS  Google Scholar 

  9. N. Ni, S. Lozano-Perez, M.L. Jenkins, et al., Porosity in oxides on zirconium fuel cladding alloys, and its importance in controlling oxidation rates, Scripta Materialia, 62, 564 (2010).

    Article  CAS  Google Scholar 

  10. T.-S. Jung, H. Jang, Y.-K. Mok, J.-S. Yoo, Analysis of EBSD image quality related to microstructure evolution in zirconium–niobium cladding to quantify the degree of recrystallization, Journal of Nuclear Materials, 509, 188 (2018).

    Article  CAS  Google Scholar 

  11. Y. Ding, J.-S. Kim, H. Kim, et al., Evaluation of anisotropic deformation behaviors in H-charged Zircaloy-4 tube, Journal of Nuclear Materials, 508, 440 (2018).

    Article  CAS  Google Scholar 

  12. T. Wang, Z. Jin, J.C. Zhao, Thermodynamic assessment of the Al-Zr binary system, Journal of Phase Equilibria, 22, 544 (2001).

    Article  CAS  Google Scholar 

  13. M. Alatalo, M. Weinert, R.E. Watson, Stability of Zr-Al alloys, Physical Review B, 57, R2009 (1998).

    Article  CAS  Google Scholar 

  14. T. Wei, X. Dai, B. Chen, J. Zhang, C. Long, Nodular Corrosion of Zr–0.85Sn–0.16Nb–0.37Fe–0.18Cr Alloy in 500 °C Steam Caused by High-temperature Processing, Oxidation of Metals, 92, 493 (2019).

  15. Z. Zhu, J. Shi, C. Yao, et al., Positron Annihilation Study of High-Temperature Oxidation Behavior of Zr–1Nb Alloy, Oxidation of Metals, 90, 657 (2018).

    Article  CAS  Google Scholar 

  16. B. Cox, Hydrogen uptake during oxidation of zirconium alloys, Journal of Alloys and Compounds, 256, 244 (1997).

    Article  CAS  Google Scholar 

  17. J. Sun, J. Liu, L. Liu, et al., Effects of Al on microstructural stability and related stress-rupture properties of a third-generation single crystal superalloy, Journal of Materials Science & Technology, 35, 2537 (2019).

    Article  Google Scholar 

  18. X.J. Jiang, Y.Y. Zhang, C.L. Li, et al., Microstructure and mechanical properties of ZrAl binary alloys, Journal of Alloys and Compounds, 811, 152068 (2019).

    Article  CAS  Google Scholar 

  19. M. Negyesi, M. Amaya, The Effect of Air Fraction in Steam on the Embrittlement of Zry-4 Fuel Cladding Oxidized at 1273–1573 K, Oxidation of Metals, 92, 439 (2019).

    Article  CAS  Google Scholar 

  20. V. Babic, C. Geers, I. Panas, Reactive Element Effects in High-Temperature Alloys Disentangled, Oxidation of Metals, (2019).

  21. H.Y. Kim, K. Nakai, J. Fu, S. Miyazaki, Effect of Al addition on superelastic properties of Ti–Zr–Nb-based alloys, Functional Materials Letters, 10, 1740002 (2017).

    Article  CAS  Google Scholar 

  22. A.H. Cai, J. Tan, D.W. Ding, H. Wang, G.J. Zhou, Effect of Al addition on properties of Cu45Zr45.5Ti9.5 bulk metallic glass, Materials Chemistry and Physics, 251, 123072 (2020).

  23. J. Du, B. Wen, R. Melnik, Y. Kawazoe, Cluster characteristics and physical properties of binary Al–Zr intermetallic compounds from first principles studies, Computational Materials Science, 103,170 (2015).

    Article  CAS  Google Scholar 

  24. Y.H. Duan, B. Huang, Y. Sun, M.J. Peng, S.G. Zhou, Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: A first-principles investigation, Journal of Alloys and Compounds, 590, 50 (2014).

    Article  CAS  Google Scholar 

  25. J. Murray, A. Peruzzi, J.P. Abriata, The Al-Zr (aluminum-zirconium) system, Journal of Phase Equilibria, 13, 277 (1992).

    Article  CAS  Google Scholar 

  26. W.-C. Hu, Y. Liu, D.-J. Li, X.-Q. Zeng, C.-S. Xu, First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf, Computational Materials Science, 83, 27 (2014).

    Article  CAS  Google Scholar 

  27. X. Tao, Y. Ouyang, H. Liu, et al., Ab initio calculation of the total energy and elastic properties of Laves phase C15 Al2RE (RE = Sc, Y, La, Ce–Lu), Computational Materials Science, 44, 392 (2008).

    Article  CAS  Google Scholar 

  28. Z. Hu, Y. Xu, Y. Chen, et al., Anomalous formation of micrometer-thick amorphous oxide surficial layers during high-temperature oxidation of ZrAl2, Journal of Materials Science & Technology, 35, 1479 (2019).

    Article  Google Scholar 

  29. P. Kofstad, High temperature corrosion, Elsevier Applied Science Publishers, Crown House, Linton Road, Barking, Essex IG 11 8 JU, UK, 1988., (1988).

  30. N. Birks, G.H. Meier, F.S. Pettit, Introduction to the high temperature oxidation of metals, Cambridge University Press, 2006.

  31. D.B. Lee, S.W. Woo, High temperature oxidation of Ti–47%Al–1.7%W–3.7%Zr alloys, Intermetallics, 13, 169 (2005).

  32. S.J. Qu, S.Q. Tang, A.H. Feng, et al., Microstructural evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy, Acta Materialia, 148, 300 (2018).

    Article  CAS  Google Scholar 

  33. D.B. Lee, M.L. Santella, High temperature oxidation of Ni3Al alloy containing Cr, Zr, Mo, and B, Materials Science and Engineering: A, 374, 217 (2004).

    Article  Google Scholar 

  34. C.T. Sims, N.S. Stoloff, W.C. Hagel, superalloys II, Wiley New York, 1987.

    Google Scholar 

  35. S. Chevalier, P. Juzon, G. Borchardt, et al., High-Temperature Oxidation of Fe3Al and Fe3Al–Zr Intermetallics, Oxidation of Metals, 73, 43 (2010).

    Article  CAS  Google Scholar 

  36. A. Hotař, P. Kejzlar, M. Palm, J. Mlnařík, The effect of Zr on high-temperature oxidation behaviour of Fe3Al-based alloys, Corrosion Science, 100, 147 (2015).

    Article  Google Scholar 

  37. X. Sun, S. Schneider, U. Geyer, W. Johnson, M.A. Nicolet, Oxidation and crystallization of an amorphous Zr60Al15Ni25 alloy, 1996.

  38. P.J. Linstrom, W.G. Mallard, The NIST Chemistry WebBook:  A Chemical Data Resource on the Internet, Journal of Chemical & Engineering Data, 46, 1059 (2001).

    Article  CAS  Google Scholar 

  39. W. Kai, H.H. Hsieh, Y.R. Chen, Y.F. Wang, C. Dong, Oxidation behavior of an Zr53Ni23.5Al23.5 bulk metallic glass at 400–600°C, Intermetallics, 15, 1459 (2007).

  40. T. Chraska, A.H. King, C.C. Berndt, On the size-dependent phase transformation in nanoparticulate zirconia, Materials Science and Engineering: A, 286, 169 (2000).

    Article  Google Scholar 

  41. Y. Xu, X. Liu, L. Gu, et al., Natural oxidation of amorphous CuxZr1-x alloys, Applied Surface Science, 457, 396 (2018).

    Article  CAS  Google Scholar 

  42. T. Mitsuhashi, M. Ichihara, U. Tatsuke, Characterization and Stabilization of Metastable Tetragonal ZrO2, Journal of the American Ceramic Society, 57, 97 (1974).

    Article  Google Scholar 

  43. R. Srinivasan, L. Rice, B. Davis, Critical Particle Size and Phase Transformation in Zirconia: Transmission Electron Microscopy and X-Ray Diffraction Studies, 2005.

  44. D. Huang, L. Huang, B. Wang, V. Ji, T. Zhang, The relationship between t-ZrO2 stability and the crystallization of a Zr-based bulk metallic glass during oxidation, Intermetallics, 31, 21 (2012).

    Article  Google Scholar 

  45. T.K. Gupta, F.F. Lange, J.H. Bechtold, Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase, Journal of Materials Science, 13, 1464 (1978).

    Article  CAS  Google Scholar 

  46. O. Bernard, A.M. Huntz, M. Andrieux, et al., Synthesis, structure, microstructure and mechanical characteristics of MOCVD deposited zirconia films, Applied Surface Science, 253, 4626 (2007).

    Article  CAS  Google Scholar 

  47. X.-S. Zhao, S.-L. Shang, Z.-K. Liu, J.-Y. Shen, Elastic properties of cubic, tetragonal and monoclinic ZrO2 from first-principles calculations, Journal of Nuclear Materials, 415, 13 (2011).

    Article  CAS  Google Scholar 

  48. D.L. Beke, I.A. Szabó, Z. Erdélyi, G. Opposits, Diffusion-induced stresses and their relaxation, Materials Science and Engineering: A, 387-389, 4 (2004).

    Article  Google Scholar 

  49. W. Hemminger, Thermochemical data of pure substances, parts I and II: I. Barin, published by VCH, Weinheim, Germany, ISBN 3-527-27812-5, 1739 pages; DM 680, Thermochimica Acta, 222, 305 (1993).

  50. H.Q. Ye, Recent developments in Ti3Al and TiAl intermetallics research in China, Materials Science and Engineering: A, 263, 289 (1999).

    Article  Google Scholar 

  51. D. Wei, J. Li, T. Zhang, H. Kou, High-Temperature Oxidation Behavior of Ti-22Al-27(Nb, Zr)Alloys, Rare Metal Materials & Engineering, 44, 261 (2015).

    Article  Google Scholar 

  52. D.B. Lee, S.W. Woo, High temperature oxidation of Ti–47% Al–1.7% W–3.7% Zr alloys, Intermetallics, 13, 169 (2005).

Download references

Acknowledgements

The authors are grateful to Dr. Hong Bo (Yanshan University, China) for help with CALPHAD calculations. This work was supported by the National Natural Science Foundation of China (No. 51571148) and the National Key Research and Development Program of China (Nos. 2017YFE0302600 and 2017YFB0701801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Li or Zumin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Xu, Y., Ma, Z. et al. Microscopic Investigation of High-Temperature Oxidation of hcp-ZrAl2. Oxid Met 94, 431–445 (2020). https://doi.org/10.1007/s11085-020-10000-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-10000-z

Keywords

Navigation