Skip to main content
Log in

Sestrins: Darkhorse in the regulation of mitochondrial health and metabolism

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Every disease is an outcome of one or more stress signals which get convened at the interface of the mitochondria. Mitochondria and metabolism are inextricably anchored to each other and a disruption in either can result in the generation of stressors, which can lead to detrimental health consequences. Stowing everything in one frame reflects that the proteins involved in the sensing of stressors are fundamental for the initiation of various pathologies and their detailed study is necessary for proper understanding of disease mechanisms. Sestrins, a class of evolutionarily conserved, stress inducible genes are activated by a wide range of stressors such as oxidative, genotoxic, and metabolic and play a role in cellular homeostasis. In addition, recent reports have highlighted their importance in governing the mitochondrial dynamics and metabolism. However, their spectrum of involvement in various pathologies has not been dissected out very well. This review will focus and discuss the role of Sestrins mainly Sestrin2 and associated nexus in the context of mitochondria, metabolism, and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SESN2:

Sestrin2

NRF2:

Nuclear factor E2-related factor 2

AMPK:

AMP‐activated protein kinase

mTOR:

Mammalian target of rapamycin

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

PRX1:

Peroxiredoxin1

PRX2:

Peroxiredoxin 2

PINK1:

PTEN-induced kinase

ATP:

Adenosine triphosphate

Rag:

Rag GTPases

ER:

Endoplasmic reticulum

References

  1. Gross J, Bhattacharya D (2009) Mitochondrial and plastid evolution in eukaryotes: an outsiders' perspective. Nat Rev 10:495–505

    CAS  Google Scholar 

  2. Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403

    PubMed  PubMed Central  Google Scholar 

  3. Gray MW, Burger G, Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol 2:REVIEW1018

    Google Scholar 

  4. Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP (2007) Mitochondria as key components of the stress response. Trends Endocrinol Metab 18:190–198

    CAS  PubMed  Google Scholar 

  5. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dan Dunn J, Alvarez LA, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Holmstrom KM, Kostov RV, Dinkova-Kostova AT (2016) The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol 1:80–91

    PubMed  PubMed Central  Google Scholar 

  9. Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88:179–188

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Sawaf O, Clarner T, Fragoulis A, Kan YW, Pufe T, Streetz K, Wruck CJ (2015) Nrf2 in health and disease: current and future clinical implications. Clin Sci 129:989–999

    CAS  Google Scholar 

  11. Wang M, Xu Y, Liu J, Ye J, Yuan W, Jiang H, Wang Z, Jiang H, Wan J (2017) Recent insights into the biological functions of sestrins in health and disease. Cell Physiol Biochem 43:1731–1741

    CAS  PubMed  Google Scholar 

  12. Dong XC (2015) The potential of sestrins as therapeutic targets for diabetes. Expert Opin Ther Targets 19:1011–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Segales J, Perdiguero E, Serrano AL, Victor PS, Ortet L, Jardi M, Budanov AV, Prat LG, Sandri M, Thomson DM, Karin M, Lee JH, Canoves PM (2020) Sestrin prevents atrophy or disused andaging muscle by integrating anabolic and catabolic signals. Nat Commun 11:189

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tao R, Xiong X, Liangpunsakul S, Dong XC (2015) Sestrin 3 protein enhances hepatic insulin sensitivity by direct activation of the mTORC2-Akt signaling. Diabetes 64:1211–1223

    CAS  PubMed  Google Scholar 

  15. Huang M, Kim HG, Zhong X, Dong C, Zhang B, Fang Z, Zhang Y, Lu X, Saxena R, Liu Y, Zhang C, Liangpunsakul S, Dong XC (2020) Sestrin 3 protects against diet-induced nonalcoholic steatohepatitis in mice through suppression of transforming growth factor beta signal transduction. Hepatology 71:76–92

    CAS  PubMed  Google Scholar 

  16. Du J, He W, Zhang C, Wu J, Li Z, Wang M, Feng S, Liang G (2020) Pentamethylquercetin attenuates cardiac remodeling via activation of the sestrins/Keap1/Nrf2 pathway in MSG-induced obese mice. Biomed Res Int 2020:3243906

    PubMed  PubMed Central  Google Scholar 

  17. Lee JH, Bodmer R, Bier E, Karin M (2010) Sestrins at the crossroad between stress and aging. Aging 2:369–374

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rafia S, Saran S (2019) Sestrin-like protein from Dictosetlium discoideum is involved in autophagy under starvation stress. Microbiol Res 220:61–71

    CAS  PubMed  Google Scholar 

  19. Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, Ocorr K, Ellisman MH, Bodmer R, Bier E, Karin M (2010) Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 327:1223–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim H, An S, Ro SH, Teixeira F, Park GJ, Kim C, Cho CS, Kim JS, Jakob U, Lee JH, Cho US (2015) Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat Commun 6:10025

    CAS  PubMed  Google Scholar 

  21. Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–460

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, Gorodin S, Fishman A, Chajut A, Einat P, Skaliter R, Gudkov AV, Chumakov PM, Feinstein E (2002) Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 21:6017–6031

    CAS  PubMed  Google Scholar 

  23. Seo K, Seo S, Ki SH, Shin SM (2016) Sestrin2 inhibits hypoxia-inducible factor-1alpha accumulation via AMPK-mediated prolyl hydroxylase regulation. Free Radic Biol Med 101:511–523

    CAS  PubMed  Google Scholar 

  24. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM (2016) Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351:43–48

    CAS  PubMed  Google Scholar 

  25. Byun JK, Choi YK, Kim JH, Jeong JY, Jeon HJ, Kim MK, Hwang I, Lee SY, Lee YM, Lee IK, Park KG (2017) A Positive feedback loop between sestrin2 and mTORC2 is required for the survival of glutamine-depleted lung cancer cells. Cell Rep 20:586–599

    CAS  PubMed  Google Scholar 

  26. Peeters H, Voz ML, Verschueren K, De Cat B, Pendeville H, Thienpont B, Schellens A, Belmont JW, David G, Van De Ven JW, Fryns JP, Gewillig M, Huylebroeck D, Peers B, Devriendt K (2006) Sesn1 is a novel gene for left-right asymmetry and mediating nodal signaling. Hum Mol Genet 15:3369–3377

    CAS  PubMed  Google Scholar 

  27. Liu Y, Kim HG, Dong E, Dong C, Huang M, Liu Y, Liangpunsakul S, Dong XC (1865) Sesn3 deficiency promotes carcinogen-induced hepatocellular carcinoma via regulation of the hedgehog pathway. Biochim Biophys Acta Mol Basis Dis 2019:2685–2693

    Google Scholar 

  28. Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600

    CAS  PubMed  Google Scholar 

  29. Lee JH, Budanov AV, Karin M (2013) Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 18:792–801

    CAS  PubMed  Google Scholar 

  30. Budanov AV, Lee JH, Karin M (2010) Stressin' Sestrins take an aging fight. EMBO Mol Med 2:388–400

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee JH, Budanov AV, Talukdar S, Park EJ, Park HL, Park HW, Bandyopadhyay G, Li N, Aghajan M, Jang I, Wolfe AM, Perkins GA, Ellisman MH, Bier E, Scadeng M, Foretz M, Viollet B, Olefsky J, Karin M (2012) Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab 16:311–321

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang D, Rhee SG (2013) Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 17:73–84

    CAS  PubMed  Google Scholar 

  33. Yang Y, Cuevas S, Yang S, Villar VA, Escano C, Asico L, Yu P, Jiang X, Weinman EJ, Armando I, Jose PA (2014) Sestrin2 decreases renal oxidative stress, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of reactive oxygen species production. Hypertension 64:825–832

    CAS  PubMed  Google Scholar 

  34. Kumar A, Shaha C (2018) SESN2 facilitates mitophagy by helping Parkin translocation through ULK1 mediated Beclin1 phosphorylation. Sci Rep 8:615

    PubMed  PubMed Central  Google Scholar 

  35. Kim SJ, Kim KM, Yang JH, Cho SS, Kim JY, Park SJ, Lee SK, Ku SK, Cho IJ, Ki SH (2017) Sestrin2 protects against acetaminophen-induced liver injury. Chemico-biol Interact 269:50–58

    CAS  Google Scholar 

  36. Park HW, Park H, Ro SH, Jang I, Semple IA, Kim DN, Kim M, Nam M, Zhang D, Yin L, Lee JH (2014) Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun 5:4233

    CAS  PubMed  Google Scholar 

  37. Wei JL, Fang M, Fu ZX, Zhang SR, Guo JB, Wang R, Lv ZB, Xiong YF (2017) Sestrin 2 suppresses cells proliferation through AMPK/mTORC1 pathway activation in colorectal cancer. Oncotarget 8:49318–49328

    PubMed  PubMed Central  Google Scholar 

  38. Ro SH, Xue X, Ramakrishnan SK, Cho CS, Namkoong S, Jang I, Semple IA, Ho A, Park HW, Shah YM, Lee JH (2016) Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. eLife 5:e12204

    PubMed  PubMed Central  Google Scholar 

  39. Zhao B, Shah P, Budanov AV, Qiang L, Ming M, Aplin A, Sims DM, He YY (2014) Sestrin2 protein positively regulates AKT enzyme signaling and survival in human squamous cell carcinoma and melanoma cells. J Biol Chem 289:35806–35814

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumar A, Giri S, Shaha C (2018) Sestrin2 facilitates glutamine-dependent transcription of PGC-1alpha and survival of liver cancer cells under glucose limitation. FEBS J 285:1326–1345

    CAS  PubMed  Google Scholar 

  41. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    CAS  PubMed  Google Scholar 

  42. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    CAS  PubMed  Google Scholar 

  43. Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jezek J, Cooper KF, Strich R (2018) Reactive oxygen species and mitochondrial dynamics: the Yin and Yang of mitochondrial dysfunction and cancer progression. Antioxidants 7:13

    PubMed Central  Google Scholar 

  45. Calabrese V, Cornelius C, Mancuso C, Lentile R, Stella AM, Butterfield DA (2010) Redox homeostasis and cellular stress response in aging and neurodegeneration. Methods Mol Biol 610:285–308

    CAS  PubMed  Google Scholar 

  46. Calabrese V, Cornelius C, Maiolino L, Luca M, Chiaramonte R, Toscano MA, Serra A (2010) Oxidative stress, redox homeostasis and cellular stress response in Meniere's disease: role of vitagenes. Neurochem Res 35:2208–2217

    CAS  PubMed  Google Scholar 

  47. Ding B, Parmigiani A, Yang C, Budanov AV (2015) Sestrin2 facilitates death receptor-induced apoptosis in lung adenocarcinoma cells through regulation of XIAP degradation. Cell Cycle 14:3231–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu A, Yu Q, Xiao S, Peng Z, Huang Y, Diao S, Cheng J, Hong M (2017) Role of sestrin2 in H2O2-induced PC12 apoptosis. Neurosci Lett 646:1–7

    CAS  PubMed  Google Scholar 

  49. Ro SH, Semple I, Ho A, Park HW, Lee JH (2015) Sestrin2, a regulator of thermogenesis and mitohormesis in brown adipose tissue. Front Endocrinol 6:114

    Google Scholar 

  50. Thamsen M, Kumsta C, Li F, Jakob U (2011) Is overoxidation of peroxiredoxin physiologically significant? Antioxid Redox Signal 14:725–730

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Woo HA, Bae SH, Park S, Rhee SG (2009) Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins. Antioxid Redox Signal 11:739–745

    CAS  PubMed  Google Scholar 

  52. Keping Y, Yunfeng S, Pengzhuo X, Liang L, Chenhong X, Jinghua M (2020) Sestrin1 inhibits oxidized low-density lipoprotein-induced activation of NLRP3 inflammasome in macrophages in a murine atherosclerosis model. Eur J Immunol. https://doi.org/10.1002/eji.201948427

    Article  PubMed  Google Scholar 

  53. Asmis R, Begley JG (2003) Oxidized LDL promotes peroxide-mediated mitochondrial dysfunction and cell death in human macrophages: a caspase-3-independent pathway. Circul Res 92:e20–e29

    CAS  Google Scholar 

  54. Hugenbuchner J, Kuznetsov A, Hermann M, Hausott B, Obexer P, Ausserlechner MJ (2012) FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3. J Cell Sci 125:1191–1203

    Google Scholar 

  55. Sabharwal SS, Schumacker PT (2014) Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat Rev Cancer 14:709–721

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kopnin PB, Agapova LS, Kopnin BP, Chumakov PM (2007) Repression of sestrin family genes contributes to oncogenic Ras-induced reactive oxygen species up-regulation and genetic instability. Cancer Res 67:4671–4678

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ye J, Palm W, Peng M, King B, Lindsten T, Li MO, Koumenis C, Thompson CB (2015) GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev 29:2331–2336

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Okamoto K, Kondo-Okamoto N (1820) Mitochondria and autophagy: critical interplay between the two homeostats. Biochim Biophys Acta 2012:595–600

    Google Scholar 

  60. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13:589–598

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis*. Annu Rev Genet 43:95–118

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kirches E (2011) LHON: mitochondrial mutations and more. Curr Genomics 12:44–54

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhuo Y, Luo H, Zhang K (2012) Leber hereditary optic neuropathy and oxidative stress. Proc Natl Acad Sci USA 109:19882–19883

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61:654–666

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tzameli I (2012) The evolving role of mitochondria in metabolism. Trends Endocrinol Metab 23:417–419

    CAS  PubMed  Google Scholar 

  66. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ (2015) Redox homeostasis and mitochondrial dynamics. Cell Metab 22:207–218

    CAS  PubMed  Google Scholar 

  68. Lisowski P, Kannan P, Mlody B, Prigione A (2018) Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep 19:e45432

    PubMed  PubMed Central  Google Scholar 

  69. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117

    CAS  PubMed  Google Scholar 

  70. Pickles S, Vigie P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28:R170–R185

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim MJ, Bae SH, Ryu JC, Kwon Y, Oh JH, Kwon J, Moon JS, Kim K, Miyawaki A, Lee MG, Shin J, Kim YS, Kim CH, Ryter SW, Choi AM, Rhee SG, Ryu JH, Yoon JH (2016) SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12:1272–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ishihara M, Urushido M, Hamada K, Matsumoto T, Shimamura Y, Ogata K, Inoue K, Taniguchi Y, Horino T, Fujieda M, Fujimoto S, Terada Y (2013) Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am J Physiol 305:F495–509

    CAS  Google Scholar 

  73. Kovaleva IE, Tokarchuk AV, Zheltukhin AO, Dalina AA, Safronov GG, Evstafieva AG, Lyamzaev KG, Chumakov PM, Budanov AV (2020) Mitochondrial localization of SESN2. PLoS ONE 15:e0226862

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20:1013–1022

    CAS  PubMed  Google Scholar 

  75. Jin SM, Youle RJ (2012) PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci 125:795–799

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Meissner C, Lorenz H, Hehn B, Lemberg MK (2015) Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 11:1484–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shi G, McQuibban GA (2017) The mitochondrial rhomboid protease PARL is regulated by PDK2 to integrate mitochondrial quality control and metabolism. Cell Rep 18:1458–1472

    CAS  PubMed  Google Scholar 

  78. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Starling S (2018) Alzheimer disease: PINK1 rescues pathology in Alzheimer disease. Nat Rev Neurol 14:4

    CAS  PubMed  Google Scholar 

  80. Du F, Yu Q, Yan S, Hu G, Lue LF, Walker DG, Wu L, Yan SF, Tieu K, Yan SS (2017) PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer's disease. Brain 140:3233–3251

    PubMed  PubMed Central  Google Scholar 

  81. Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P, Vandenberghe W (2018) Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. eLife 7:e35878

    PubMed  PubMed Central  Google Scholar 

  82. O'Flanagan CH, Morais VA, O'Neill C (2016) PINK1, cancer and neurodegeneration. Oncoscience 3:1–2

    PubMed  PubMed Central  Google Scholar 

  83. Agnihotri S, Golbourn B, Huang X, Remke M, Younger S, Cairns RA, Chalil A, Smith CA, Krumholtz SL, Mackenzie D, Rakopoulos P, Ramaswamy V, Taccone MS, Mischel PS, Fuller GN, Hawkins C, Stanford WL, Taylor MD, Zadeh G, Rutka JT (2016) PINK1 is a negative regulator of growth and the Warburg effect in glioblastoma. Cancer Res 76:4708–4719

    CAS  PubMed  Google Scholar 

  84. Wang P, Wang L, Lu J, Hu Y, Wang Q, Li Z, Cai S, Liang L, Guo K, Xie J, Wang J, Lan R, Shen J, Liu P (2019) SESN2 protects against doxorubicin-induced cardiomyopathy via rescuing mitophagy and improving mitochondrial function. J Mol Cell Cardiol 133:125–137

    CAS  PubMed  Google Scholar 

  85. Lin Q, Ma Y, Chen Z, Hu J, Chen C, Fan Y, Liang W, Ding G (2020) Sestrin2 regulates podocyte mitochondrial dysfunction and apoptosis under high glucose conditions via AMPK. Int J Mol Med 45:1361–1372

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kumar A, Shaha C (2018) RBX1-mediated ubiquitination of SESN2 promotes cell death upon prolonged mitochondrial damage in SH-SY5Y neuroblastoma cells. Mol Cell Biochem 446:1–9

    CAS  PubMed  Google Scholar 

  87. Lear TB, Lockwood KC, Ouyang Y, Evankovich JW, Larsen MB, Lin B, Liu Y, Chen BB (2019) The RING-type E3 ligase RNF186 ubiquitinates Sestrin-2 and thereby controls nutrient sensing. J Biol Chem 294:16527–16534

    CAS  PubMed  PubMed Central  Google Scholar 

  88. McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H (2012) The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Investig 122:1574–1583

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nascimento EB, Osler ME, Zierath JR (2013) Sestrin 3 regulation in type 2 diabetic patients and its influence on metabolism and differentiation in skeletal muscle. Am J Physiol 305:E1408–1414

    CAS  Google Scholar 

  90. Zhou Z, Torres M, Sha H, Halbrook CJ, Bergh FVD, Reinert RB, Yamada T, Wang S, Luo Y, Hunter AH, Wang C, Sanderson TH, Liu M, Taylor A, Sesaki H, Lyssiotis CA, Wu J, Kersten S, Beard DA, Qi L (2020) Endoplasmic reticulum-associated degradation regulates mitochondrial dynamics in brown adipocytes. Science 368:54–60

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Namba T (2019) BAP31 regulates mitochondrial function via interaction with Tom40 within ER-mitochondria contact sites. Sci Adv 5:eaaw1386

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    CAS  PubMed  Google Scholar 

  93. Guertl B, Noehammer C, Hoefler G (2000) Metabolic cardiomyopathies. Int J Exp Pathol 81:349–372

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hunter WG, Kelly JP, McGarrah RW 3rd, Kraus WE, Shah SH (2016) Metabolic dysfunction in heart failure: diagnostic, prognostic, and pathophysiologic insights from metabolomic profiling. Curr Heart Fail Rep 13:119–131

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Investig 116:1776–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66:789–800

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Qi D, Young LH (2015) AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 26:422–429

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Morrison A, Chen L, Wang J, Zhang M, Yang H, Ma Y, Budanov A, Lee JH, Karin M, Li J (2015) Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart. FASEB J 29:408–417

    CAS  PubMed  Google Scholar 

  99. Quan N, Wang L, Chen X, Luckett C, Cates C, Rousselle T, Zheng Y, Li J (2018) Sestrin2 prevents age-related intolerance to post myocardial infarction via AMPK/PGC-1alpha pathway. J Mol Cell Cardiol 115:170–178

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hanus J, Zhang H, Chen DH, Zhou Q, Jin P, Liu Q, Wang S (2015) Gossypol acetic acid prevents oxidative stress-induced retinal pigment epithelial necrosis by regulating the FoxO3/sestrin2 pathway. Mol Cell Biol 35:1952–1963

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Dyck JR, Lopaschuk GD (2006) AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol 574:95–112

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD (2012) Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res 53:709–717

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wan Z, Root-McCaig J, Castellani L, Kemp BE, Steinberg GR, Wright DC (2014) Evidence for the role of AMPK in regulating PGC-1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue. Obesity 22:730–738

    CAS  PubMed  Google Scholar 

  104. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim M, Sujkowski A, Namkoong S, Gu B, Cobb T, Kim B, Kowalsky AH, Cho CS, Semple I, Ro SH, Davis C, Brooks SV, Karin M, Wessells RJ, Lee JH (2020) Sestrins are evolutionarily conserved mediators of exercise benefits. Nat Commun 11:190

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chai D, Wang G, Zhou Z, Yang H, Yu Z (2015) Insulin increases Sestrin 2 content by reducing its degradation through the PI 3 K/mTOR signaling pathway. Int J Endocrinol 2015:505849

    PubMed  PubMed Central  Google Scholar 

  107. Kim JS, Ro SH, Kim M, Park HW, Semple IA, Park H, Cho US, Wang W, Guan KL, Karin M, Lee JH (2015) Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep 5:9502

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shaw RJ (2008) mTOR signaling: RAG GTPases transmit the amino acid signal. Trends Biochem Sci 33:565–568

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Peng M, Yin N, Li MO (2014) Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 159:122–133

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, Spooner E, Isasa M, Gygi SP, Sabatini DM (2014) The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 9:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lanna A, Gomes DCO, Durovic BM, Mcdonnell T, Escors D, Gilroy DW, Lee JH, Karin M, Akbar AN (2017) A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat Immunol 18:3

    Google Scholar 

  113. Pereira BI, De Maeyer RPH, Covre LP, Nehar-Belaid D, Lanna A, Ward S, Marches R, Chambers ES, Gomes DCO, Riddell NE, Maini MK, Teixeira VH, Janes SM, Gilroy DW, Larbi A, Mabbott NA, Ucar D, Kuchel GA, Henson SM, Strid J, Lee JH, Banchereau J, Akbar AN (2020) Sestrins induce natural killer function in senescent-like CD8+ T cells. Nat Immunol 21:684–694

    CAS  PubMed  Google Scholar 

  114. Ben-Sahra I, Dirat B, Laurent K, Puissant A, Auberger P, Budanov A, Tanti JF, Bost F (2013) Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death. Cell Death Differ 20:611–619

    CAS  PubMed  Google Scholar 

  115. Ding B, Parmigiani A, Divakaruni AS, Archer K, Murphy AN, Budanov AV (2016) Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death. Sci Rep 6:22538

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Seo K, Ki SH, Shin SM (2015) Sestrin2-AMPK activation protects mitochondrial function against glucose deprivation-induced cytotoxicity. Cell Signal 27:1533–1543

    CAS  PubMed  Google Scholar 

  117. Sanchez-Alvarez M, Strippoli R, Donadelli M, Bazhin AV, Cordani M (2019) Sestrins as a therapeutic bridge between ROS and autophagy in cancer. Cancers (Basel) 11:1415

    CAS  Google Scholar 

  118. Cordani M, Sanchez-Alvarez M, Strippoli R, Bazhin AV, Donadelli M (2019) Sestrins at the interface of ROS control and autophagy regulation in health and disease. Oxid Med Cell Longev. https://doi.org/10.1155/2019/1283075

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AK: Reviewed literature, drafted the manuscript, written and edited the manuscript. DD: proof-read and edited the manuscript. CS: Proof-read and edited the manuscript.

Corresponding author

Correspondence to Ashish Kumar.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Dhiman, D. & Shaha, C. Sestrins: Darkhorse in the regulation of mitochondrial health and metabolism. Mol Biol Rep 47, 8049–8060 (2020). https://doi.org/10.1007/s11033-020-05769-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05769-w

Keywords

Navigation