Skip to main content
Log in

LncRNA TUG1 reduces inflammation and enhances insulin sensitivity in white adipose tissue by regulating miR-204/SIRT1 axis in obesity mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Prevalence of obesity becomes an important health issue worldwide, but the management of obesity remains unsatisfied. This study aimed to explore the mechanism of long non-coding RNA TUG/miR-204/SIRT1 axis, which was involved in the pathogenesis of obesity. Obesity mouse model was induced by high-fat diet and treated with taurine upregulated gene1 (TUG1) virus via tail intravenous injection. Then, body weight, serum glucose, insulin tolerance, testicular fat weight were detected, as well as the expression of TUG1, microRNA-204 (miR-204), sirtuin1 (SIRT1), and inflammation and fatty accumulation associated proteins and cytokines. Regulatory relationship between TUG1/SIRT1 and miR-204 was confirmed by dual-luciferase reporter activity assay. A high-glucose-induced 3T3-L1 cell model was also constructed to explore the regulatory mechanism of TUG/miR-204/SIRT1 axis in the pathogenesis of obesity at cell level after altering the expression of TUG1, miR-204, and SIRT1. Overexpression of TUG1 could significantly attenuate the weight, serum glucose, glucose, insulin tolerance, fatty accumulation, and inflammation in obesity mice, as well as the elevation of miR-204, but increase the expression of SIRT1, phosphorylated AKT (p-AKT), glucose transporter4 (GLUT4), and peroxisome proliferator activated receptorγ (PPARγ). Both TUG1 and SIRT1 were targets of miR-204 and could be negatively regulated by miR-204. Overexpression of TUG1 could suppress the inflammation in adipocytes via downregulating miR-204 and promote GLUT4/PPARγ/AKT pathway high-glucose-induced inflammation in 3T3-L1 cells. miR-204 inhibitors could also suppress high-glucose-induced inflammation in 3T3-L1 cells via promoting SIRT1/ GLUT4/PPARγ/AKT pathway. LncRNA TUG1 could negatively regulate miR-204 to alleviate inflammation and insulin tolerance via promoting SIRT1/GLUT4/PPARγ/AKT pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data were available on request from the corresponding authors.

References

  1. Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL (2018) Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007–2008 to 2015–2016. JAMA 319:1723–1725. https://doi.org/10.1001/jama.2018.3060

    Article  PubMed  Google Scholar 

  2. He Y, Pan A, Wang Y, Yang Y, Xu J, Zhang Y, Liu D, Wang Q, Shen H, Zhang Y, Yan D, Peng Z, Hu FB, Ma X (2017) Prevalence of overweight and obesity in 15.8 million men aged 15–49 years in rural China from 2010 to 2014. Sci Rep 7:5012. https://doi.org/10.1038/s41598-017-04135-4

    Article  CAS  PubMed  Google Scholar 

  3. Pearl RL, Wadden TA, Hopkins CM, Shaw JA, Hayes MR, Bakizada ZM, Alfaris N, Chao AM, Pinkasavage E, Berkowitz RI, Alamuddin N (2017) Association between weight bias internalization and metabolic syndrome among treatment-seeking individuals with obesity. Obesity (Silver Spring) 25:317–322. https://doi.org/10.1002/oby.21716

    Article  CAS  Google Scholar 

  4. Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, Kumari M, Zhang S, Vuckovic I, Laznik-Bogoslavski D, Dzeja P, Banks AS, Rosen ED, Spiegelman BM (2017) Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab 26(660–671):e3. https://doi.org/10.1016/j.cmet.2017.08.009

    Article  CAS  Google Scholar 

  5. Wei S, Du M, Jiang Z, Hausman GJ, Zhang L, Dodson MV (2016) Long noncoding RNAs in regulating adipogenesis: new RNAs shed lights on obesity. Cell Mol Life Sci 73:2079–2087. https://doi.org/10.1007/s00018-016-2169-2

    Article  CAS  PubMed  Google Scholar 

  6. Latorre J, Fernandez-Real JM (2018) LncRNAs in adipose tissue from obese and insulin-resistant subjects: new targets for therapy? EBioMedicine 30:10–11. https://doi.org/10.1016/j.ebiom.2018.03.023

    Article  PubMed  Google Scholar 

  7. Chen C, Cui Q, Zhang X, Luo X, Liu Y, Zuo J, Peng Y (2018) Long non-coding RNAs regulation in adipogenesis and lipid metabolism: emerging insights in obesity. Cell Signal 51:47–58. https://doi.org/10.1016/j.cellsig.2018.07.012

    Article  CAS  PubMed  Google Scholar 

  8. Sun J, Ruan Y, Wang M, Chen R, Yu N, Sun L, Liu T, Chen H (2016) Differentially expressed circulating LncRNAs and mRNA identified by microarray analysis in obese patients. Sci Rep 6:35421. https://doi.org/10.1038/srep35421

    Article  CAS  PubMed  Google Scholar 

  9. Liu W, Ma C, Yang B, Yin C, Zhang B, Xiao Y (2017) LncRNA Gm15290 sponges miR-27b to promote PPARgamma-induced fat deposition and contribute to body weight gain in mice. Biochem Biophys Res Commun 493:1168–1175. https://doi.org/10.1016/j.bbrc.2017.09.114

    Article  CAS  PubMed  Google Scholar 

  10. Nuermaimaiti N, Liu J, Liang X, Jiao Y, Zhang D, Liu L, Meng X, Guan Y (2018) Effect of lncRNA HOXA11-AS1 on adipocyte differentiation in human adipose-derived stem cells. Biochem Biophys Res Commun 495:1878–1884. https://doi.org/10.1016/j.bbrc.2017.12.006

    Article  CAS  Google Scholar 

  11. Long J, Badal SS, Ye Z, Wang Y, Ayanga BA, Galvan DL, Green NH, Chang BH, Overbeek PA, Danesh FR (2016) Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J Clin Investig 126:4205–4218. https://doi.org/10.1172/JCI87927

    Article  Google Scholar 

  12. Duan LJ, Ding M, Hou LJ, Cui YT, Li CJ, Yu DM (2017) Long noncoding RNA TUG1 alleviates extracellular matrix accumulation via mediating microRNA-377 targeting of PPARgamma in diabetic nephropathy. Biochem Biophys Res Commun 484:598–604. https://doi.org/10.1016/j.bbrc.2017.01.145

    Article  CAS  Google Scholar 

  13. Lei X, Zhang L, Li Z, Ren J (2018) Astragaloside IV/lncRNA-TUG1/TRAF5 signaling pathway participates in podocyte apoptosis of diabetic nephropathy rats. Drug Des Dev Ther 12:2785–2793. https://doi.org/10.2147/DDDT.S166525

    Article  CAS  Google Scholar 

  14. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690. https://doi.org/10.1016/j.cmet.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  15. Jung TW, Lee KT, Lee MW, Ka KH (2012) SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150. Biochem Biophys Res Commun 422:229–232. https://doi.org/10.1016/j.bbrc.2012.04.129

    Article  CAS  Google Scholar 

  16. Boutant M, Joffraud M, Kulkarni SS, Garcia-Casarrubios E, Garcia-Roves PM, Ratajczak J, Fernandez-Marcos PJ, Valverde AM, Serrano M, Canto C (2015) SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function. Mol Metab 4:118–131. https://doi.org/10.1016/j.molmet.2014.12.008

    Article  CAS  Google Scholar 

  17. Albiero M, Poncina N, Tjwa M, Ciciliot S, Menegazzo L, Ceolotto G, Vigili de Kreutzenberg S, Moura R, Giorgio M, Pelicci P, Avogaro A, Fadini GP (2014) Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes 63:1353–1365. https://doi.org/10.2337/db13-0894

    Article  CAS  Google Scholar 

  18. Yu SY, Dong B, Fang ZF, Hu XQ, Tang L, Zhou SH (2018) Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy. J Cell Mol Med 22:4886–4898. https://doi.org/10.1111/jcmm.13754

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Yang B, Ma B (2016) The UCA1/miR-204/Sirt1 axis modulates docetaxel sensitivity of prostate cancer cells. Cancer Chemother Pharmacol 78:1025–1031. https://doi.org/10.1007/s00280-016-3158-8

    Article  CAS  Google Scholar 

  20. Li L, Sun Q, Li Y, Yang Y, Yang Y, Chang T, Man M, Zheng L (2015) Overexpression of SIRT1 induced by resveratrol and inhibitor of mir-204 suppresses activation and proliferation of microglia. J Mol Neurosci 56:858–867. https://doi.org/10.1007/s12031-015-0526-5

    Article  CAS  PubMed  Google Scholar 

  21. Vandevijvere S, Chow CC, Hall KD, Umali E, Swinburn BA (2015) Increased food energy supply as a major driver of the obesity epidemic: a global analysis. Bull World Health Organ 93:446–456. https://doi.org/10.2471/BLT.14.150565

    Article  PubMed  Google Scholar 

  22. Imes CC, Burke LE (2014) The obesity epidemic: the United States as a cautionary tale for the rest of the world. Curr Epidemiol Rep 1:82–88. https://doi.org/10.1007/s40471-014-0012-6

    Article  PubMed  Google Scholar 

  23. Li J, Zhang M, An G, Ma Q (2016) LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp Biol Med (Maywood) 241:644–649. https://doi.org/10.1177/1535370215622708

    Article  CAS  Google Scholar 

  24. Yin DD, Zhang EB, You LH, Wang N, Wang LT, Jin FY, Zhu YN, Cao LH, Yuan QX, De W, Tang W (2015) Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic beta cells. Cell Physiol Biochem 35:1892–1904. https://doi.org/10.1159/000373999

    Article  CAS  PubMed  Google Scholar 

  25. Cao LH, Yin DD, Xia CC, Wang N, De W (2017) Function of lncRNA TUG1 in insulin secretion from pancreatic beta cells. Progress Modern Biomed 17(25):4847–4851. https://doi.org/10.13241/j.cnki.pmb.2017.25.011

    Article  Google Scholar 

  26. Han X, Yang Y, Sun Y, Qin L, Yang Y (2018) LncRNA TUG1 affects cell viability by regulating glycolysis in osteosarcoma cells. Gene 674:87–92. https://doi.org/10.1016/j.gene.2018.06.085

    Article  CAS  PubMed  Google Scholar 

  27. Ruan X (2016) Long non-coding RNA central of glucose homeostasis. J Cell Biochem 117:1061–1065. https://doi.org/10.1002/jcb.25427

    Article  CAS  PubMed  Google Scholar 

  28. Su S, Liu J, He K, Zhang M, Feng C, Peng F, Li B, Xia X (2016) Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation. FEBS J 283:1261–1274. https://doi.org/10.1111/febs.13660

    Article  CAS  PubMed  Google Scholar 

  29. Li T, Pan H, Li R (2016) The dual regulatory role of miR-204 in cancer. Tumour Biol 37:11667–11677. https://doi.org/10.1007/s13277-016-5144-5

    Article  CAS  PubMed  Google Scholar 

  30. He H, Chen K, Wang F, Zhao L, Wan X, Wang L, Mo Z (2015) miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/beta-catenin signaling. Int J Mol Med 35:1587–1595. https://doi.org/10.3892/ijmm.2015.2160

    Article  CAS  PubMed  Google Scholar 

  31. Yu C, Li L, Xie F, Guo S, Liu F, Dong N, Wang Y (2018) LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc Res 114(1):168–179. https://doi.org/10.1093/cvr/cvx180

    Article  CAS  Google Scholar 

  32. Zhang L, Wang X, Chen P (2013) MiR-204 down regulates SIRT1 and reverts SIRT1-induced epithelial-mesenchymal transition, anoikis resistance and invasion in gastric cancer cells. BMC Cancer 13:290. https://doi.org/10.1186/1471-2407-13-290

    Article  CAS  PubMed  Google Scholar 

  33. Gao Z, Zhang J, Kheterpal I, Kennedy N, Davis RJ, Ye J (2011) Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J Biol Chem 286:22227–22234. https://doi.org/10.1074/jbc.M111.228874

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YP wrote the manuscript, YZ, MG conducted the experiments and collected the data, MG, YM collected and analyzed the data, YZ, YP designed the study, and all authors approved the submission.

Corresponding author

Correspondence to Yongde Peng.

Ethics declarations

Conflict of interest

All authors declared they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gu, M., Ma, Y. et al. LncRNA TUG1 reduces inflammation and enhances insulin sensitivity in white adipose tissue by regulating miR-204/SIRT1 axis in obesity mice. Mol Cell Biochem 475, 171–183 (2020). https://doi.org/10.1007/s11010-020-03869-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03869-6

Keywords

Navigation