Skip to main content
Log in

Nitrogen Ions Implantation in W-Based Quad Alloy: Structure, Electrical Resistivity, Surface Roughness and Vickers Hardness as a Function of Ion Dose

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Five W-alloy specimens, containing 8.57% Ni, 6.34% Cu, and 1.34% Mo, were bombarded with 5.2 MeV singly charged nitrogen ions. The ions dose range was 5 × 1014–1 × 1016 ions/cm2. XRD patterns portrayed diffraction peaks of pure W as well as of Cu0.4W0.6, MoNi4, and Ni4W phases. Harris analysis showed that the preferentially oriented planes depend on the nitrogen ions dose. The structural parameters, namely lattice strain and crystallite size, vary with nitrogen ions dose alike. Same pattern is followed by surface hardness and electrical resistivity. The increase in the values of all the parameters with ions dose is rapid in the range 0–1 × 1015 ions/cm2 and later on slow till the maximum ions dose 1 × 1016 ions/cm2. However, the interdependence of each parameter on the other ones was linear. Surface roughness of the specimens was found to decrease on increasing ions dose. On the other hand, surface hardness registers a rise as crystallite size increases, and hence follows Inverse Hall–Petch relation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Yabe, O. Nishimura, T. Fujihana, M. Iwaki, Characterization of the surface layer of various metals implanted with nitrogen. Surf. Coat. Technol. 66, 250–254 (1994)

    Article  CAS  Google Scholar 

  2. H.L. Zhang, D.Z. Wang, N.K. Huang, The effect of nitrogen ion implantation on tungsten surfaces. Appl. Surf. Sci. 150, 34–38 (1999)

    Article  CAS  Google Scholar 

  3. H. Savaloni, F. Modiri, Surface nano-structural modifications and characteristics in nitrogen ion implanted W as a function of temperature and N+ energy. Appl. Surf. Sci. 253, 1135–1142 (2006)

    Article  CAS  Google Scholar 

  4. M.F. Arani, H. Savaloni, M. Ghoranneviss, Dependence of surface nano-structural modifications of Ti implanted by N+ ions on temperature. Appl. Surf. Sci. 256, 4502–4511 (2010)

    Article  Google Scholar 

  5. M. Manouchehrian, M.M. Larijani, B. Banagar, Influence of energy nitrogen ion implantation on structural and mechanical properties of chromium thin film. J. Thin Films Sci. Technol. 3, 67–70 (2014)

    Article  Google Scholar 

  6. S. Intarasiri, L.D. Yu, T. Chudoba, H. Reuther, U. Rammelt, E. Richter, Hardness, tribological behavior and corrosion performance at the very near surface of nitrogen ion-implanted X5CrNi18.10 steel. Surf. Coat. Technol. 99, 305–310 (1998)

    Article  CAS  Google Scholar 

  7. A.A. Youssef, P. Budzynski, J. Filiks, A.P. Kobzev, J. Sielanko, Improvement of wear and hardness of steel by nitrogen implantation. Vacuum 77, 37–45 (2004)

    Article  CAS  Google Scholar 

  8. A. Belbah, A. Mkaddem, N. Ladaci, N. Mebarki, M.E. Mansori, Low energy implantation to inhibit wear in N+ ions implanted WC–Co composite. Mater. Des. 53, 202–208 (2014)

    Article  CAS  Google Scholar 

  9. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—The stopping and range of ions in matter. Nucl. Inst. Methods Phys. Res. B Beam Interact. Mater. Atom. 268, 1818–1823 (2010)

    Article  CAS  Google Scholar 

  10. SRIM-2013. www.srim.org/SRIM/SRIMLEGL.htm

  11. M.Z. Butt, D. Ali, M. Aftab, F. Bashir, M.L. Khalid, M.W. Khaliq, Role of carbon ions implantation in modifying the structural, electrical, and mechanical properties of W–8.57 Ni–6.34 Cu–1.34 Mo alloy. Phys. B Condens. Matter 573, 49–61 (2019)

    Article  CAS  Google Scholar 

  12. M. Rafique, M.Z. Butt, S. Ahmad, Investigation of morphological, structural, and mechanical characteristics of Zircaloy-4 irradiated with 3.5 MeV hydrogen ions beam. Mater. Res. Exp. 4, 096507 (2017)

    Article  Google Scholar 

  13. J.D. Makinson, J.S. Lee, S.H. Magner, R.J.D. Angelis, W.N. Weins, A.S. Hieronymus, X-ray diffraction signatures of defects in nanocrystalline materials. Adv. X-ray Anal. 42, 407–411 (2000)

    CAS  Google Scholar 

  14. T. Ungar, Characterization of nanocrystalline materials by X-ray line profile analysis. J. Mater. Sci. 42, 1584–1593 (2007)

    Article  CAS  Google Scholar 

  15. B.D. Cullity, Elements of X-Ray Diffraction, 3rd edn. (Addison-Wesley Publishing Company, Inc., Massachusetts, 1956), pp. 272–274

    Google Scholar 

  16. G.B. Harris, X. Quantitative measurement of preferred orientation in rolled uranium bars. Philos. Mag. 424, 113–123 (1952)

    Article  Google Scholar 

  17. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminum and wolfram. Acta Metall. 1, 22–31 (1953)

    Article  CAS  Google Scholar 

  18. Y. Rosenberg, V.S. Machavariani, A. Voronel, S. Garber, A. Rubshtein, A.I. Frenkel, E.A. Stern, Strain energy density in the X-ray powder diffraction from mixed crystals and alloys. J. Phys. Condens. Matter 12, 8081–8088 (2000)

    Article  CAS  Google Scholar 

  19. B. Jiang, G.J. Weng, A composite model for the grain-size dependence of yield stress of nanograined materials. Metal. Mater. Trans. A 34, 765–772 (2003)

    Article  Google Scholar 

  20. A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, On the validity of the Hall–Petch relationship in nanocrystalline materials. Scr. Metall. 23, 1679–1683 (1989)

    Article  CAS  Google Scholar 

  21. R.A. Masumura, P.M. Hazzledine, C.S. Pande, Yield stress of fine grained materials. Acta Mater. 46, 4527–4534 (1998)

    Article  CAS  Google Scholar 

  22. H. Conrad, J. Narayan, On the grain size softening in nanocrystalline materials. Scr. Mater. 42, 1025–1030 (2000)

    Article  CAS  Google Scholar 

  23. S. Takeuchi, The mechanism of the inverse Hall–Petch relation of nanocrystals. Scr. Mater. 44, 1483–1487 (2001)

    Article  CAS  Google Scholar 

  24. C.E. Carlton, P.J. Ferreira, What is behind the inverse Hall–Petch effect in nanocrystalline materials? Acta Mater. 55, 3749–3756 (2007)

    Article  CAS  Google Scholar 

  25. M. Dao, L. Lu, R.J. Asaro, J.T.M.D. Hosson, E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041–4065 (2007)

    Article  CAS  Google Scholar 

  26. H. Conrad, Grain-size dependence of the flow stress of Cu from millimeters to nanometers. Metall. Mater. Trans. A 35, 2681–2695 (2004)

    Article  Google Scholar 

  27. J. Schiøtz, K.W. Jacobsen, A maximum in the strength of nanocrystalline copper. Science 301, 1357–1359 (2003)

    Article  Google Scholar 

  28. M.Z. Butt, A.M. Majeed, M.W. Khaliq, D. Ali, Structural, electrical, and mechanical characterization of Al 5086 alloy irradiated with 248 nm–20 ns KrF excimer laser. J. Alloys Compd. 695, 3069–3082 (2017)

    Article  CAS  Google Scholar 

  29. A. Sergeev, V. Mitin, Electron-phonon interaction in disordered conductors: Static and vibrating scattering potentials. Phys. Rev. B 61, 6041–6047 (2000)

    Article  CAS  Google Scholar 

  30. H. Kaya, U. Böyük, E. Çadırlı, N. Maraşlı, Measurements of the microhardness, electrical and thermal properties of the Al–Ni eutectic alloy. Mater. Des. 34, 707–712 (2012)

    Article  CAS  Google Scholar 

  31. H. Kaya, U. Böyük, E. Çadırlı, N. Maraşlı, Influence of growth rate on microstructure, microhardness, and electrical resistivity of directionally solidified Al-7 wt% Ni hypo-eutectic alloy. Met. Mater. Int. 19, 39–44 (2013)

    Article  CAS  Google Scholar 

  32. E. Çadırlı, Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al–Cu alloys. Met. Mater. Int. 19, 411–422 (2013)

    Article  Google Scholar 

  33. E. Cadirli, M. Sahin, Influence of temperature gradient and growth rate on the mechanical properties of directionally solidified Sn–3.5 wt% Ag eutectic solder. J. Mater. Sci. Mater. Electron. 23, 31–40 (2012)

    Article  CAS  Google Scholar 

  34. I. Horcas, R. Fernández, J.M.G. Rodríguez, J. Colchero, J.G. Herrero, A.M. Baro, WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instru. 78, 013705 (2007)

    Article  CAS  Google Scholar 

  35. M.W. Khaliq, M.Z. Butt, M. Saleem, Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications. Mater. Res. Exp. 4, 076513 (2017)

    Article  Google Scholar 

  36. M.Z. Butt, D. Ali, M.U. Tanveer, S. Naseem, Surface roughness and electrical resistivity of high-purity zinc irradiated with nanosecond visible laser pulses. Appl. Surf. Sci. 305, 466–473 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the technical staff of the Accelerator Laboratory, Centre for Advanced Studies in Physics, GC University, Lahore, for their kind cooperation and valuable assistance in irradiating the W-based alloy specimens. Special thanks are due to Engr. Muhammad Irfan, Head PITMAEM, PCSIR Laboratories Complex, Lahore, for providing elemental composition of the W-based alloy. Authors are also indebted to the learned referee for his valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zakria Butt.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, M.Z., Ali, D., Aftab, M. et al. Nitrogen Ions Implantation in W-Based Quad Alloy: Structure, Electrical Resistivity, Surface Roughness and Vickers Hardness as a Function of Ion Dose. Met. Mater. Int. 27, 3342–3358 (2021). https://doi.org/10.1007/s12540-020-00861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00861-z

Keywords

Navigation