Skip to main content
Log in

Multilinear singular integrals on non-commutative \(L^p\) spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove \(L^p\) bounds for the extensions of standard multilinear Calderón–Zygmund operators to tuples of \({\text {UMD}}\) spaces tied by a natural product structure. The product can, for instance, mean the pointwise product in \({\text {UMD}}\) function lattices, or the composition of operators in the Schatten-von Neumann subclass of the algebra of bounded operators on a Hilbert space. We do not require additional assumptions beyond \({\text {UMD}}\) on each space—in contrast to previous results, we e.g. show that the Rademacher maximal function property is not necessary. The obtained generality allows for novel applications. For instance, we prove new versions of fractional Leibniz rules via our results concerning the boundedness of multilinear singular integrals in non-commutative \(L^p\) spaces. Our proof techniques combine a novel scheme of induction on the multilinearity index with dyadic-probabilistic techniques in the \({\text {UMD}}\) space setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This includes that if \(y\in Y(X)\) then \(|y|_{Y(X)}<\infty \).

  2. Recall that \(L^{q_{{\mathcal {J}}}^0}({\mathcal {M}})_+\) denotes the positive cone of \(L^{q_{{\mathcal {J}}}^0}({\mathcal {M}}),\) namely the positive operators in \(L^{q_{{\mathcal {J}}}^0}({\mathcal {M}})\).

References

  1. Bourgain, J.: Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 21(2), 163–168 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burkholder, D.L.: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., Wadsworth, Belmont, CA, pp. 270–286 (1983)

  3. Castro, A.J., Hytönen, T.P.: Bounds for partial derivatives: necessity of UMD and sharp constants. Math. Z. 282(3–4), 635–650 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coifman, Ronald, R., Meyer, Y.: Nonlinear harmonic analysis, operator theory and P.D.E, Beijing lectures in harmonic analysis (Beijing, 1984), Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, pp. 3–45 (1986)

  5. Cruz-Uribe, D., Martell, J.M., Pérez, C.: Extrapolation from \(A_\infty \) weights and applications. J. Funct. Anal. 213(2), 412–439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Culiuc, A., Di Plinio, F., Yumeng, O.: Domination of multilinear singular integrals by positive sparse forms. J. Lond. Math. Soc. (2) 98(2), 369–392 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Culiuc, A., Di Plinio, F., Yumeng, O.: Uniform sparse domination of singular integrals via dyadic shifts. Math. Res. Lett. 25(1), 21–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Culiuc, A., Di Plinio, F., Yumeng, O.: A sparse estimate for multisublinear forms involving vector-valued maximal functions. Bruno Pini Mathematical Analysis Seminar 8(1), 168–184 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Di Plinio, F., Li, K., Martikainen, H., Vuorinen, E.: Multilinear operator-valued Calderón–Zygmund theory. J. Funct. Anal. 279(8), 108666, 62 (2020)

  10. Di Plinio, F., Yumeng, O.: Banach-valued multilinear singular integrals. Indiana Univ. Math. J. 67(5), 1711–1763 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Do, Y., Oberlin, R., Palsson, E.A.: Variation-norm and fluctuation estimates for ergodic bilinear averages. Indiana Univ. Math. J. 66(1), 55–99 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Do, Y., Thiele, C.: \(L^p\) theory for outer measures and two themes of Lennart Carleson united. Bull. Am. Math. Soc. (N.S.) 52(2), 249–296 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Figiel, T.: Singular integral operators: a martingale approach, Geometry of Banach spaces (Strobl, 1989), London Math. Soc. Lecture Note Ser., vol. 158, Cambridge Univ. Press, Cambridge, pp. 95–110 (1990)

  14. Figiel, T., Wojtaszczyk, P.: Special Bases in Function Spaces, Handbook of the Geometry of Banach Spaces, vol. I, pp. 561–597. North-Holland, Amsterdam (2001)

    MATH  Google Scholar 

  15. Geiss, S., Montgomery-Smith, S., Saksman, E.: On singular integral and martingale transforms. Trans. Am. Math. Soc. 362(2), 553–575 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grafakos, L., Martell, J.M.: Extrapolation of weighted norm inequalities for multivariable operators and applications. J. Geom. Anal. 14(1), 19–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grafakos, L., Seungly, O.: The Kato–Ponce inequality. Commun. Partial Differ. Equ. 39(6), 1128–1157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grafakos, L., Torres, R.H.: Multilinear Calderón–Zygmund theory. Adv. Math. 165(1), 124–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hänninen, T.S., Hytönen, T.P.: Operator-valued dyadic shifts and the \(T(1)\) theorem. Monatsh. Math. 180(2), 213–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hytönen, T., Kemppainen, M.: On the relation of Carleson’s embedding and the maximal theorem in the context of Banach space geometry. Math. Scand. 109(2), 269–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hytönen, T., McIntosh, A., Portal, P.: Kato’s square root problem in Banach spaces. J. Funct. Anal. 254(3), 675–726 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hytönen, T., Portal, P.: Vector-valued multiparameter singular integrals and pseudodifferential operators. Adv. Math. 217(2), 519–536 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hytönen, T., van Neerven, J., Portal, P.: Conical square function estimates in UMD Banach spaces and applications to \(H^\infty \)-functional calculi. J. Anal. Math. 106, 317–351 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 63, Springer, Cham (2016)

  25. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach spaces. Vol. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 67, Springer, Cham, Probabilistic methods and operator theory. (2017)

  26. Hytönen, T., Weis, L.: A \(T1\) theorem for integral transformations with operator-valued kernel. J. Reine Angew. Math. 599, 155–200 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Hytönen, T.P.: On operator-multipliers for mixed-norm \(L^{\overline{p}}\) spaces. Arch. Math. (Basel) 85(2), 151–155 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hytönen, T.P.: The sharp weighted bound for general Calderón–Zygmund operators. Ann. Math. (2) 175(3), 1473–1506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hytönen, T.P.: The vector-valued nonhomogeneous Tb theorem. Int. Math. Res. Not. IMRN 2, 451–511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hytönen, T.P., Lacey, M.T., Parissis, I.: The vector valued quartile operator. Collect. Math. 64(3), 427–454 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Junge, M., Quanhua, X.: Representation of certain homogeneous Hilbertian operator spaces and applications. Invent. Math. 179(1), 75–118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kalton, N., Weis, L.: The \(H^\infty \)-calculus and sums of closed operators. Math. Ann. 321(2), 319–345 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lacey, M., Thiele, C.: \(L^p\) estimates on the bilinear Hilbert transform for \(2<p<\infty \). Ann. Math. (2) 146(3), 693–724 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lacey, M., Thiele, C.: On Calderón’s conjecture. Ann. Math. (2) 149(2), 475–496 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lacey, M.T., Arias, D.M.: The sparse T1 theorem. Houston J. Math. 43(1), 111–127 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Li, K., Martell, J.M., Martikainen, H., Ombrosi, S., Vuorinen, E.: End-point estimates, extrapolation for multilinear Muckenhoupt classes, and applications. Trans. Amer. Math Soc. https://doi.org/10.1090/tran/8172

  38. Li, K., Martell, J.M., Ombrosi, S.: Extrapolation for multilinear Muckenhoupt classes and applications. Adv. Math. 373 (2020). https://doi.org/10.1016/j.aim.2020.107286

  39. Li, K., Martikainen, H., Yumeng, O., Vuorinen, E.: Bilinear representation theorem. Trans. Am. Math. Soc. 371(6), 4193–4214 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. McConnell, T.R.: Decoupling and stochastic integration in UMD Banach spaces. Probab. Math. Stat. 10(2), 283–295 (1989)

    MathSciNet  MATH  Google Scholar 

  41. Nazarov, F., Treil, S., Volberg, A.: The \(Tb\)-theorem on non-homogeneous spaces. Acta Math. 190(2), 151–239 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nieraeth, B.: Quantitative estimates and extrapolation for multilinear weight classes. Math. Ann. 375(1–2), 453–507 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Petermichl, S.: Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol. C. R. Acad. Sci. Paris Sér. I Math. 330(6), 455–460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Petermichl, S.: The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical \(A_p\) characteristic. Am. J. Math. 129(5), 1355–1375 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Pisier, G.: Martingales in Banach Spaces, Cambridge Studies in Advanced Mathematics, vol. 155. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  46. Pisier, G., Xu, Q.: Non-Commutative \(L^p\)-Spaces, Handbook of the Geometry of Banach Spaces, vol. 2, pp. 1459–1517. North-Holland, Amsterdam (2003)

    Book  MATH  Google Scholar 

  47. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319(4), 735–758 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xu, Q.: Noncommutative \({L}^p\)-spaces and martingale inequalities. Book Manuscr. (2007)

Download references

Acknowledgements

The authors would like to warmly thank Yumeng Ou for fruitful discussions on the subject of multilinear UMD-valued singular integrals. F. Di Plinio is grateful to Ben Hayes and Vittorino Pata for enlightening exchanges on factorization in noncommutative \(L^p\) spaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Di Plinio.

Additional information

Communicated by Loukas Grafakos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F. Di Plinio has been partially supported by the National Science Foundation under the grants NSF-DMS-1650810, NSF-DMS-1800628 and NSF-DMS-2000510. K. Li was supported by Juan de la Cierva—Formación 2015 FJCI-2015-24547, by the Basque Government through the BERC 2018–2021 program and by Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through project MTM2017-82160-C2-1-P funded by (AEI/FEDER, UE) and acronym “HAQMEC”. H. Martikainen was supported by the Academy of Finland through the Grants 294840 and 306901, and by the 3-year research Grant 75160010 of the University of Helsinki. He is a member of the Finnish Centre of Excellence in Analysis and Dynamics Research. E. Vuorinen was supported by the Academy of Finland through the Grant 306901, by the Finnish Centre of Excellence in Analysis and Dynamics Research, and by Jenny and Antti Wihuri Foundation.

Appendix A: Iterated mixed-norm non-commutative \(L^p\) spaces

Appendix A: Iterated mixed-norm non-commutative \(L^p\) spaces

Let \({\mathcal {M}}\) be a von Neumann algebra equipped with a n.s.f. trace as described in Example 3.11. Recall in particular that \({\mathcal {A}}=L^0({\mathcal {M}})\) is an associative \(*\)-algebra endowed with a compatible complete metrizable topology, induced by the metric \(d_{{\mathcal {A}}}\) of convergence in measure. For an integer \(S\ge 1\), let \((M_s,\mu _s)\), \(s=1,\ldots , S\), be \(\sigma \)-finite measure spaces and \((\Omega _S,\omega _S)\) the product measure space

$$\begin{aligned} \Omega _S=\prod _{s=1}^S M_s,\quad \omega _S= \prod _{s=1}^S \mu _s. \end{aligned}$$

Let \({\mathscr {A}}_{0,S}\) be the vector space of simple functions \(f:\Omega _S\rightarrow {\mathcal {A}}\), namely

$$\begin{aligned} f (t)=\sum _{j=1}^{J } A_{j } {\mathbf {1}}_{E^{j}}(t), \quad t=(t_1,\ldots , t_s)\in \Omega _S, \end{aligned}$$

with \(A_{j}\in {\mathcal {A}},\) \(E^{j} \subset \Omega _S\) with \(\omega _S(E^j)<\infty \). Then \({\mathscr {A}}_{0,S}\) is an associative algebra with respect to the pointwise product: for \(f,g \in {\mathscr {A}}_{0,S}\), the function fg defined by \((fg)(t)=f(t) g(t)\), where the latter is the strong product in \({\mathcal {A}}\), belongs to \( {\mathscr {A}}_{0,S}\). We denote by

$$\begin{aligned} {\mathscr {A}}_S {{:}{=}} \text { closure of } {\mathscr {A}}_0 \text { w.r.t. sequential } \ d_{\mathcal A}\text {-pointwise convergence} \end{aligned}$$

namely, \(f \in {\mathscr {A}}_S \) if there exists a sequence \(f_n \in {\mathscr {A}}_{0,S}\) such that

$$\begin{aligned} \lim _{n} d_{{\mathcal {A}}} (f(t),f_n(t)) =0 \quad a.e. \ \ t \in \Omega _S. \end{aligned}$$

Then \({\mathscr {A}}_S\), the class of strongly measurable \(\mathcal A\)-valued functions on \(\Omega _S\), is an associative algebra with respect to the same product. Furthermore, \({\mathscr {A}}_S\) is complete with respect to the topology of convergence in measure, namely \(f_n\rightarrow f\) if for all \(\varepsilon >0\)

$$\begin{aligned} \lim _{n} \mu \left( \left\{ t\in \Omega _S: d_{{\mathcal {A}}} (f(t),f_n(t))>\varepsilon \right\} \right) =0, \end{aligned}$$

and the product operation is continuous. Note that the latter topology is also metrizable, proceeding in an analogous way to [24, Proposition A.2.4].

Recall that \({\mathcal {M}}\) is equipped with the n.s.f. trace \(\tau \), which is a linear bounded functional on \( L^1(\mathcal M)\). Then the functional

$$\begin{aligned} \tau _S(f) {:}{=}\int _{\Omega _S} \tau (f(t)) \, \mathrm {d} \omega _S(t) \end{aligned}$$

is linear and bounded on the Bochner space \( L^1(\Omega _S,\omega _S; L^1({\mathcal {M}}))\), which is a subspace of \({\mathscr {A}}_S\). With this definition, \({\mathscr {A}}_S\) is endowed with the trace \(\tau _S\). Under these assumptions, we have the following proposition.

Proposition A.1

For a Hölder tuple \(\{p_j^{0}:1\le j\le m\}\) as in (3.1), let

$$\begin{aligned} X_{j}^0= L^{p_j^0}({\mathcal {M}}). \end{aligned}$$

Let \(\{p_j^{s}:1\le j\le m\}\) be further Hölder tuples of exponents, for \(1\le s\le S\). Then the Banach subspaces of \({\mathscr {A}}_s\)

$$\begin{aligned} X_j^s = L^{p_j^{s}} (M_s,\mu _s; X_j^{s-1} ), \quad s=1,\ldots ,S, \end{aligned}$$
(A.2)

are a \({\text {UMD}}\) Hölder m-tuple.

Before the proof proper, we need to set some notation, and develop suitable auxiliary lemmata. For \(1\le k \le m-1\), \(\mathcal J=\{j_1<j_2<\cdots <j_k\}\subset {\mathcal {J}}_m\), and \(0\le s\le S\) we write

$$\begin{aligned} \frac{1}{q_{{\mathcal {J}}}^s}= \sum _{u=1}^k \frac{1}{p_{j_u}^s}, \quad \frac{1}{p_{{\mathcal {J}}}^s}= 1 -\frac{1}{q_{{\mathcal {J}}}^s}. \end{aligned}$$

It will be convenient to introduce the auxiliary mixed norm spaces

$$\begin{aligned} \begin{aligned}&E_{j}^1 = L^{p_{j}^1}(M_1,\mu _1), \, \\&E_{j}^s = L^{p_{j}^s} (M_s,\mu _s;E_{j}^{s-1}), \quad s=2,\ldots , S, \end{aligned} \end{aligned}$$

for \(j=1,\ldots , m\) and similarly

$$\begin{aligned} \begin{aligned}&E_{{\mathcal {J}}}^0 = {\mathbb {C}}, \, \\&E_{{\mathcal {J}}}^s = L^{q_{{\mathcal {J}}}^s} (M_s,\mu _s;E_{{\mathcal {J}}}^{s-1} ), \quad s=1,\ldots , S. \end{aligned} \end{aligned}$$

In general we write S(X) for the unit sphere in the Banach space X.

Lemma A.3

Let \({\mathcal {J}}=\{j_u:1\le u\le k\}\). There exists maps \(B_u^{s}:S(E_{{\mathcal {J}}}^s)\rightarrow S(E_{j_u}^s)\) such that

$$\begin{aligned} f = \prod _{u=1}^k B_u^s(f) \quad \forall f\in S(E_{{\mathcal {J}}}^s) \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\Vert f_n -f \Vert _{E_{{\mathcal {J}}}^{s }}\rightarrow 0, \; \Vert f_n(t_s)-f(t_s)\Vert _{E_{{\mathcal {J}}}^{s-1}} \rightarrow 0 \; \mathrm {a.e.} \; t_s\in M_s \implies \\&\Vert B_u^s(f) -B_u^s(f_n) \Vert _{E_{j_u}^{s }}\rightarrow 0, \; \Vert B_u^s(f_n) (t_s)-B_u^s(f_n) (t_s)\Vert _{E_{j_u}^{s-1}} \rightarrow 0 \; \mathrm {a.e.} \; t_s\in M_s, \\&\quad 1\le u\le k. \end{aligned}\nonumber \\ \end{aligned}$$
(A.4)

Proof

We deal with the case \(j_u=u,u=1,\ldots , k\) which is generic. We prove the statement by induction on s. If \(s\ge 2\), assume inductively that maps \(B_u^{s-1}\) as in the statement have been constructed; for the base case \(s=1\), we run the argument below with \(B^{0}_u\) the identity map. In both cases, we need to define \(B^s_u:S(E_{{\mathcal {J}}}^s)\rightarrow S(E_{u}^s)\). We use that each \(f\in S(E_{{\mathcal {J}}}^s) \) is \(E_{{\mathcal {J}}}^{s-1}\)-valued. So for each \(t_s\in M_s\), write

$$\begin{aligned} f (t_s ) = |f(t_s )|_{ E_{{\mathcal {J}}}^{s-1}} g(t_s) = \prod _{u=1}^k \left( |f (t_s ) |_{E_{{\mathcal {J}}}^{s-1}}^{\frac{q_{{\mathcal {J}}}^s }{p_u^s}} g_{u}(t_s) \right) {=}{:}\prod _{u=1}^k B^s_u(f)(t_s ) \end{aligned}$$

where g is \(S( E_{{\mathcal {J}}}^{s-1})\)-valued, so that each \(g_u = B_u^{s-1}(g)\) is \(S(E_{u}^{s-1})\)-valued. Notice that each \(f_{u}=B^s_u(f)\) is (strongly) \(\mu _s\)-measurable with values in \(E_{u}^{s-1 }\): in fact \(|f (\cdot ) |_{E_{{\mathcal {J}}}^{s-1}}\) is \(\mu _s\)-measurable and each \(g_u\) is \(\mu _s\)-measurable, as \(B_u^{s-1}\) is (norm) continuous from \(E_{\mathcal {J}}^{s-1} \rightarrow E_{u}^{s-1 }\) and g is \(\mu _s\)-measurable with values in \(E_{\mathcal {J}}^{s-1}\) . A direct calculation reveals that

$$\begin{aligned} \Vert f_{u}\Vert _{E_{u}^s}=1, \quad 1\le u\le k. \end{aligned}$$

It remains to show that the thus defined maps \( B_u^s \) are continuous in the sense of (A.4) by assuming the same properties hold for the maps \( B_u^{s-1} \). Let \(f_n, f\) be as in the first line of (A.4) and write \(f_n(t_s)=|f_n(t_s)|_{E_{{\mathcal {J}}}^{s-1}} g_n(t_s)\). We first show the pointwise convergence: for each we have

$$\begin{aligned} \begin{aligned}&\Vert {B}^s_u(f)(t_s)-B^s_u(f_n)(t_s)\Vert _{E_{u}^{s-1}} \le \Vert f(t_s)\Vert _{E_{{\mathcal {J}}}^{s-1}}\Vert {B}^{s-1}_u(g(t_s))-B^{s-1}_u(g_n(t_s)) \Vert _{E_{u}^{s-1}}\\&+ \quad \Vert B^{s-1}_u(g_n(t_s))\Vert _{E_{u}^{s-1}} \big |\Vert f(t_s)\Vert _{E_{{\mathcal {J}}}^{s-1}}^{\frac{q_{{\mathcal {J}}}^s}{p_u^s}} - \Vert f_n(t_s)\Vert _{E_{{\mathcal {J}}}^{s-1}}^{\frac{q_{{\mathcal {J}}}^s}{p_u^s}} \big | \end{aligned} \end{aligned}$$

Relying on the norm continuity of \({B}^{s-1}_u\) we obtain that both summands in the previous display converge to zero for each \(t_s\) such that \(\Vert f_n(t_s)\Vert _{E_{{\mathcal {J}}}^{s-1}} \rightarrow \Vert f(t_s)\Vert _{E_{{\mathcal {J}}}^{s-1}}, \Vert g_n(t_s)- g(t_s)\Vert _{E_{{\mathcal {J}}}^{s-1}}\rightarrow 0\); this is a set of full \(\mu _s\) measure, so that this part of the proof is complete. We come to the norm continuity in (A.4). We have

$$\begin{aligned} \begin{aligned}&\Vert {B}^s_u(f)-B^s_u(f_n)\Vert _{E_{u}^s}^{p_u^s}\lesssim \int _{M_s} |f(t_s) |_{E_{{\mathcal {J}}}^{s-1}}^{q_{{\mathcal {J}}}^s} |B_u^{s-1}(g(t_s))- B_u^{s-1}(g_n(t_s))|^{p_u^s}_{E_{u}^{s-1}}\, \mathrm {d} \mu _s(t_s) \\&\quad + \int _{M_s} \left| |f(t_s)|_{E_{{\mathcal {J}}}^{s-1}}^{\frac{q_{{\mathcal {J}}}^s}{p_u^s}} -|f_n(t_s)|_{E_{{\mathcal {J}}}^{s-1}}^{\frac{q_{{\mathcal {J}}}^s}{p_u^s}} \right| ^{p_u^s}|B_u^{s-1}(g_n(t_s))|^{p_u^s}_{E_{u}^{s-1}}\, \mathrm {d} \mu _s(t_s). \end{aligned} \end{aligned}$$

The first integrand converges to zero pointwise a.e. and is dominated by \(|f(t_s) |_{E_{{\mathcal {J}}}^{s-1}}^{q_{{\mathcal {J}}}^s}\), so the integral converges to zero by dominated convergence. The second integral is equal to

$$\begin{aligned} \Vert F -F_n \Vert ^{p_u^s}_{L^{p_u^s}(M_s,\mu _s)}, \quad F(t_s)=|f (t_s)|_{E_{{\mathcal {J}}}^{s-1}}^{\frac{q_{{\mathcal {J}}}^s}{p_u^s}}, \quad F_n(t_s)=|f_n(t_s)|_{E_{{\mathcal {J}}}^{s-1}}^{\frac{q_{{\mathcal {J}}}^s}{p_u^s}}. \end{aligned}$$

Notice that \(\Vert F \Vert _{p_u^s}= \Vert f\Vert _{E_{{\mathcal {J}}}^{s}}^{{q_{\mathcal {J}}^s}/{p_u^s}}\), \(\Vert F_n \Vert _{p_u}= \Vert f_n\Vert _{E_{{\mathcal {J}}}^{s}}^{{q_{\mathcal {J}}^s}/{p_u^s}}\). As \(F_n\rightarrow F\) pointwise, \(F_n,F\in L^{p_u^s}(M_s,\mu _s) \) and \( \Vert F_n \Vert _{p_u^s}\rightarrow \Vert F \Vert _{p_u^s}\), then \(\Vert F -F_n \Vert _{p_u^s}\) converges to zero by a well-known variation of the proof of the \(L^p\) dominated convergence theorem. \(\square \)

Lemma A.5

LetFootnote 2

$$\begin{aligned} \begin{aligned}&X_{{\mathcal {J}}}^0 = L^{q_{{\mathcal {J}}}^0}({\mathcal {M}}), \quad X_{{\mathcal {J}},+}^0= L^{q_{{\mathcal {J}}}^0}({\mathcal {M}})_+, \\&X_{{\mathcal {J}}}^s = L^{q_{{\mathcal {J}}}^s} (M_s,\mu _s;X_{{\mathcal {J}}}^{s-1}),\quad X_{{\mathcal {J}},+}^s = L^{q_{\mathcal J}^s} (M_s,\mu _s;X_{{\mathcal {J}},+}^{s-1}), \quad s=1,\ldots , S. \end{aligned} \end{aligned}$$

Let \(f\in X_{{\mathcal {J}},+}^s \) be a simple function with \(\Vert f\Vert _{X_{{\mathcal {J}}}^s}=1\). Then there exist \(f_u \in X_{j_u,+}^s\), \(u=1,\ldots , k\) with

$$\begin{aligned} f=\prod _{u=1}^k f_u, \quad \Vert f_u\Vert _{X_{j_u}^S}=1. \end{aligned}$$

Proof

Again we deal with the generic case \(j_u=u,u=1,\ldots , k\). First of all, we make a remark about the case \(s=0\). Fix \(A\in X_{{\mathcal {J}},+}^0\) with \(\Vert A\Vert _{X_{\mathcal {J}}^0}=1\). Using the Borel functional calculus for positive closed densely defined operators to define \(A^\theta \) for \(\theta >0\)

$$\begin{aligned} A= \prod _{u=1}^k B_u(A), \quad B_u(A)= A^{\frac{q_{\mathcal {J}}^0}{p_{u}^0}}, \quad u=1,\ldots ,k. \end{aligned}$$
(A.6)

Trivially

$$\begin{aligned} \Vert B_u(A)\Vert _{X_u^0}=\Vert A\Vert ^{\frac{q_{\mathcal {J}}^0}{p_{u}^0}}_{X_{\mathcal {J}}^0}=1, \quad u=1,\ldots ,k. \end{aligned}$$

We now prove the main statement. Let \(f\in X_{{\mathcal {J}},+}^s \) be a simple function with \(\Vert f\Vert _{X_{{\mathcal {J}}}^s}=1\). We factor

$$\begin{aligned} f(t) = F(t) A(t), \quad F(t)= |f(t)|_{X_{\mathcal {J}}^0}, \quad t \in \Omega _s. \end{aligned}$$

Notice that \(F\in E_{{\mathcal {J}}}^s\) of unit norm, so that using Lemma A.3

$$\begin{aligned} F= \prod _{u=1}^k B_u^s(F) , \quad \Vert B_u^s(F)\Vert _{E_{u}^s}=1, \end{aligned}$$

and we may write, also using (A.6)

$$\begin{aligned} f= \prod _{u=1}^k f_u, \quad f_u(t)=B_u^s(F)(t) B_u(A(t)), \end{aligned}$$

Notice that each \(f_u\) is strongly measurable as \(B_u(A(\cdot ))\) is a simple \(X_{u,+}^0\)-valued function and \(B_u^s(F)\) is a measurable function in \(E_u^s\). Also as \(|B_u(A(t))|_{X_u^0}=1\) for all \(t\in \Omega _s\)

$$\begin{aligned} \Vert f_u\Vert _{X_u^s} = \Vert B_u^s(F)\Vert _{E_{u}^s}=1, \end{aligned}$$

which completes the proof of the claim. \(\square \)

We turn to the proof of the proposition. Namely we need to show that the tuple \(X_j^s\) from (A.2) is a \({\text {UMD}}\) Hölder tuple for each \(s=1,\ldots , S\). In proving this, by virtue of the case \(s=0\) being already established in Example 3.11 we may argue inductively and assume the claim has been proved in the cases of \(0,\ldots , s-1\).

Clearly each \( X_j^s\) is a subspace of \( {\mathscr {A}}_s\). Denoting by \(q_j^s, s=0,\ldots , S\) the conjugate exponent of \(p_j^s\), it is convenient to define the spaces

$$\begin{aligned}\begin{aligned}&Y_{j}^0 = L^{q_{j}^0}({\mathcal {M}}), \, \\&Y_{j}^s = L^{q_{j}^{s}} (M_s,\mu _s;Y_{j}^{s-1} ), \quad s=1,\ldots , S, \end{aligned} \end{aligned}$$

which are Banach subspaces of \( {\mathscr {A}}_s\). Further, as each \(X_j^s\) is a reflexive Banach space and enjoys the Radon-Nikodým property [24, Theorem 1.3.21], an inductive argument yields the Riesz representation theorem (cf. [24, Theorem 1.3.10]) then yields that

$$\begin{aligned} \left( X_j^s\right) ^*=Y_j^s, \quad 1\le j\le m \end{aligned}$$

through the identification

$$\begin{aligned} \lambda \in (X_j^s)^* \mapsto g_\lambda \in Y_j^s \quad \lambda (f) = \tau _s( g_\lambda f) , \quad f \in X_j^s. \end{aligned}$$

We have in particular shown that each \(X_j^s\) is an admissible space for the algebra \({\mathscr {A}}_s\) with trace \(\tau _s\) and \(Y(X_j^s)=Y_j^s\) .

We verify that \(\{ X_j^s:j \in {\mathcal {J}}_m\}\) is a \({\text {UMD}}\) Hölder tuple by induction on m. The case \(m=2\) is actually immediate by virtue of the observation and the well known fact that each \(X_j^s,Y_j^s\) is a \({\text {UMD}}\) space.

To obtain the inductive step, we fix \(m\ge 3\) and verify the following equality. For each \(1\le k \le m-1\), \(\mathcal J=\{j_1<j_2<\cdots <j_k\}\subset {\mathcal {J}}_m\), there holds

$$\begin{aligned} Y( \{ X_{j}^s:j\in {\mathcal {J}}\}) \text { is isometrically isomorphic to } \left( X_{{\mathcal {J}}}^s\right) ^* , \end{aligned}$$
(A.7)

where we refer to the spaces defined in Lemma A.5. More explicitly, denoting

$$\begin{aligned} \begin{aligned}&Y_{{\mathcal {J}}}^0 = L^{p_{{\mathcal {J}}}^0}({\mathcal {M}}), \\&Y_{{\mathcal {J}}}^s = L^{p_{{\mathcal {J}}}^s} (M_s,\mu _s;Y_{{\mathcal {J}}}^{s-1}), \quad s=1,\ldots , S, \end{aligned}\end{aligned}$$

we have \(Y(\{ X_{j}^s:j\in {\mathcal {J}}\})=Y_{{\mathcal {J}}}^s= \left( X_{{\mathcal {J}}}^s\right) ^* \).

Property P1 then corresponds to this equality in the cases \(k= m-1\). Verifying property P2 amounts to checking that when \(k<m-1\), the tuple \(\{ X^s_j:j\in {\mathcal {J}}\} \cup \{ Y^s_{{\mathcal {J}}}\} \) is a \({\text {UMD}}\) Hölder \((k+1)\)-tuple. As \(k< m-1\), \(\{ X_j^s:j\in {\mathcal {J}}\} \cup \{ Y^s_{{\mathcal {J}}}\} \) is a \({\text {UMD}}\) Hölder \((k+1)\)-tuple and the exponents \(\{p_j^s: j \in {\mathcal {J}}, p^s({{\mathcal {J}}})\}\) are a Hölder tuple, this check is made by a straightforward appeal to the induction assumption.

We are left with proving (A.7). To do this we will define a linear surjective isometry \(\Phi :Y( \{ X_{j}^s:j\in {\mathcal {J}}\})\rightarrow Y_{{\mathcal {J}}}^{s } \). First of all note that

$$\begin{aligned} \Vert g\Vert _{ Y( \{ X_{j}^s:j\in {\mathcal {J}}\})} \le \Vert g\Vert _{L^{p_{\mathcal {J}}^s}(M_s,\mu _s; Y_{{\mathcal {J}}}^{s-1})} = \Vert g\Vert _{ Y_{{\mathcal {J}}}^{s }} \end{aligned}$$
(A.8)

descends immediately from Hölder’s inequality in \(L^{p}(M_s,\mu _s)\)-spaces and Lemma 3.1 applied to the \({\text {UMD}}\) Hölder tuple \(X_{j_1}^{s-1}, X_{j_2}^{s-1},\ldots , X_{j_k}^{s-1}\). We will use this below.

Fix then \(g\in Y( \{ X_{j}^s:j\in {\mathcal {J}}\}) \). We claim that if f is a simple \(X_{{\mathcal {J}},+}^0\)-valued function on \(\Omega _s\) with \(\Vert f\Vert _{X_{{\mathcal {J}}}^s}=1\), then

$$\begin{aligned} |\tau _s(g f)|\le \Vert g\Vert _{ Y( \{ X_{j}^s:j\in \mathcal J\})} . \end{aligned}$$
(A.9)

Indeed, applying Lemma 3.1 we obtain

$$\begin{aligned}&\left| \tau _s(g f)\right| = \left| \tau _s\left( g \prod _{u=1}^k f_u\right) \right| \le \Vert g\Vert _{ Y( \{ X_{j}^s:j\in {\mathcal {J}}\})} \prod _{u=1}^k \Vert f_u\Vert _{X_{j_u}^s}, \\&\quad \Vert f_u\Vert _{X_{j_u}^s} = 1, \quad u=1,\ldots , k, \end{aligned}$$

which is (A.9). As \(X_{\mathcal {J}}^s\) is the \( X_{\mathcal {J}}^s\)-norm closure of the linear span of simple \(X_{{\mathcal {J}},+}^0\)-valued function on \(\Omega _s\), the linear bounded functional \(f\mapsto \tau _s(g f)\) extends uniquely to an element \(\Phi (g) \) of \((X_{\mathcal {J}}^s)^*\equiv Y_{\mathcal {J}}^s\) with

$$\begin{aligned} \Vert \Phi (g)\Vert _{ Y_{\mathcal {J}}^s} \le \Vert g\Vert _{ Y( \{ X_{j}^s:j\in {\mathcal {J}}\})}. \end{aligned}$$

It is easy to see that the map \(\Phi :Y( \{ X_{j}^s:j\in \mathcal J\})\rightarrow Y_{{\mathcal {J}}}^{s } \) is linear. From (A.8) we gather that if \(g \in Y_{{\mathcal {J}}}^{s }\) then \(\Phi (g)\) is well-defined. In this case the linear bounded functionals \(g\mapsto \tau _s(g f)\) and \(\Phi (g)\) coincide on a dense set, it must be \(\Phi (g)=g\). So \(\Phi \) is obviously surjective. Furthermore using (A.8) again we obtain

$$\begin{aligned} \Vert \Phi (g)\Vert _{ Y_{\mathcal {J}}^s} \ge \Vert \Phi (g)\Vert _{ Y( \{ X_{j}^s:j\in {\mathcal {J}}\})} = \Vert g\Vert _{ Y( \{ X_{j}^s:j\in {\mathcal {J}}\})} \ge \Vert \Phi (g)\Vert _{ Y_{\mathcal {J}}^s} \end{aligned}$$

whence equality must hold throughout. So \(\Phi \) is a linear isometric isomorphism and the proof of (A.7) is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Plinio, F., Li, K., Martikainen, H. et al. Multilinear singular integrals on non-commutative \(L^p\) spaces. Math. Ann. 378, 1371–1414 (2020). https://doi.org/10.1007/s00208-020-02068-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02068-4

Keywords

Mathematics Subject Classification

Navigation