Skip to main content
Log in

Structural Evolution of Martensitic Steel During Dry Sliding Friction Studied with Synchrotron Radiation

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Sliding friction causes significant structural transformations in the subsurface layers of interacting materials. These changes are associated with complicated mechanochemical processes which include but not limited to plastic flow, refinement of structure, increase of dislocation density, oxidation, delamination and formation of wear debris. In this study we attempted to observe some of these processes using synchrotron X-ray diffraction using operando and ex situ approaches. For this reason a special friction tester was used, which allows probing the surface layer of the sample using X-ray microbeam. The research was carried out at Beamline ID13 of the European Synchrotron Radiation Facility. The as-quenched medium-carbon steel AISI-5135 was used in experiments. The effect of friction on X-ray line broadening, texturing and formation of iron oxides was analysed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Heilmann, P., Don, J., Sun, T.C., Rigney, D., Glaeser, W.A.: Wear 91, 171 (1983). https://doi.org/10.1016/0043-1648(83)90252-1

    Article  Google Scholar 

  2. Rigney, D., Chen, L.H., Naylor, M.G.S., Rosenfield, A.R.: Wear 100, 195 (1984). https://doi.org/10.1016/0043-1648(84)90013-9

    Article  Google Scholar 

  3. Suh, N.: Wear 25, 111 (1973). https://doi.org/10.1016/0043-1648(73)90125-7

    Article  Google Scholar 

  4. Lim, S.C., Ashby, M.F.: Acta Metall. 35, 1 (1987). https://doi.org/10.1016/0001-6160(87)90209-4

    Article  Google Scholar 

  5. Rigney, D.: Wear Part. 21, 405 (1992). https://doi.org/10.1016/S0167-8922(08)70548-0

    Article  Google Scholar 

  6. Rigney, D.: Annu. Rev. Mater. Res. 18, 141 (2003). https://doi.org/10.1146/annurev.ms.18.080188.001041

    Article  Google Scholar 

  7. Rigney, D.: Tribol. Int. 30, 361 (1997). https://doi.org/10.1016/S0301-679X(96)00065-5

    Article  Google Scholar 

  8. Yagi, K., Ebisu, Y., Sugimura, J., Kajita, S., Ohmori, T., Suzuki, A.: Tribol. Lett. 43(3), 361 (2011). https://doi.org/10.1007/s11249-011-9817-3

    Article  Google Scholar 

  9. Yagi, K., Kajita, S., Izumi, T., Koyamachi, J., Tohyama, M., Saito, K., Sugimura, J.: Tribol. Lett. 61(2), 19 (2016). https://doi.org/10.1007/s11249-015-0636-9

    Article  Google Scholar 

  10. Bataev, I.A., Bataev, A.A., Lazurenko, D.V., Burov, V.G., Smirnov, A.I., Nikulina, A.A., Ivanov, D.A.: Russ. Phys. J. 61(3), 503 (2018). https://doi.org/10.1007/s11182-018-1426-2

    Article  Google Scholar 

  11. Butorin, D.E., Burov, V.G., Burov, S.V., Tolochko, B.P., Bataev, I.A.: Russ. Phys. J. 60(5), 817 (2017). https://doi.org/10.1007/s11182-017-1144-1

    Article  Google Scholar 

  12. Tarasov, S., Rubtsov, V., Kolubaev, A.: Wear 268, 59 (2010). https://doi.org/10.1016/j.wear.2009.06.027

    Article  Google Scholar 

  13. Panin, V., Kolubaev, A., Tarasov, S., Popov, V.: Wear 249, 860 (2002). https://doi.org/10.1016/S0043-1648(01)00819-5

    Article  Google Scholar 

  14. Tarasov, S.: Met. Sci. Heat Treat. 48, 226 (2006). https://doi.org/10.1007/s11041-006-0075-1

    Article  Google Scholar 

  15. Tarassov, S.Y., Kolubaev, A.V.: Wear 231(2), 228 (1999). https://doi.org/10.1016/S0043-1648(99)00107-6

    Article  Google Scholar 

  16. Rigney, D., Fu, X.Y., Hammerberg, J.E., Holian, B., Falk, M.L.: Scr. Mater. 49, 977 (2003). https://doi.org/10.1016/S1359-6462(03)00472-X

    Article  Google Scholar 

  17. Chen, L.H., Rigney, D.: Wear 105, 47 (1985). https://doi.org/10.1016/0043-1648(85)90005-5

    Article  Google Scholar 

  18. Burov, V., Bataev, I., Smirnov, A.: MATEC Web Conf. 129, 2024 (2017). https://doi.org/10.1051/matecconf/201712902024

    Article  Google Scholar 

  19. Liao, Y., Marks, L.: Int. Mater. Rev. 62, 1 (2016). https://doi.org/10.1080/09506608.2016.1213942

    Article  Google Scholar 

  20. Becker, S., Popp, U., Greiner, C.: Rev. Sci. Instrum. 87(8), 085101 (2016). https://doi.org/10.1063/1.4959883

    Article  Google Scholar 

  21. Kumar, A., Kailas, S.: Res. Rep. Met. 1(4), 1000110 (2017)

    Google Scholar 

  22. Rowe, K.G., Bennett, A.I., Krick, B.A., Sawyer, W.G.: Tribol. Int. 62, 208 (2013). https://doi.org/10.1016/j.triboint.2013.02.028

    Article  Google Scholar 

  23. Aoki, S., Ihara, I.: Mech. Eng. J. 2, 14 (2015). https://doi.org/10.1299/mej.14-00431

    Article  Google Scholar 

  24. Bennett, A.I., Rowe, K.G., Gregory-Sawyer, W.: Tribol. Lett. 55(1), 205 (2014). https://doi.org/10.1007/s11249-014-0347-7

    Article  Google Scholar 

  25. Muramatsu, Y., Okuyama, M., Takahashi, N., Ohmori, T., Gullikson, E.M.: Anal. Sci. 33, 1465 (2017). https://doi.org/10.2116/analsci.33.1465

    Article  Google Scholar 

  26. Enachescu, M.: Nanoscale Effects of Friction, Adhesion and Electrical Conduction in AFM Experiments. InTech, New York (2012)

    Book  Google Scholar 

  27. Schell, N.: Synchrotr. Radiat. News 30(3), 29 (2017). https://doi.org/10.1080/08940886.2017.1316129

    Article  MathSciNet  Google Scholar 

  28. Kajita, S., Yagi, K., Izumi, T., Koyamachi, J., Tohyama, M., Saito, K., Sugimura, J.: Tribol. Lett. 57(1), 6 (2015). https://doi.org/10.1007/s11249-014-0443-8

    Article  Google Scholar 

  29. Bataev, A., Burov, V., Nikulina, A., Bataev, I., Lazurenko, D., Popelukh, A.I., Ivanov, D.: Mater. Perform. Charact. 7, 20170065 (2018). https://doi.org/10.1520/MPC20170065

    Article  Google Scholar 

  30. Bataev, I., Lazurenko, D., Bataev, A., Burov, V., Ivanov, I., Emurlaev, K., Smirnov, A., Rosenthal, M., Burghammer, M., Ivanov, D., Georgarakis, K., Ruktuev, A., Ogneva, T., Jorge, A.: Acta Mater. 196, 355 (2020). https://doi.org/10.1016/j.actamat.2020.06.049

    Article  Google Scholar 

  31. Korshunov, L., Makarov, A., Schastlivtsev, V., Yakovleva, I., Osintseva, A.: Phys. Met. Metallogr 66(5), 948 (1988)

    Google Scholar 

  32. Korshunov, L., Makarov, A., Chernenko, N.: Phys. Met. Metallogr. 78(4), 128 (1994)

    Google Scholar 

  33. Kieffer, J., Karkoulis, D.: J. Phys: Conf. Ser. 425(20), 202012 (2013). https://doi.org/10.1088/1742-6596/425/20/202012

    Article  Google Scholar 

  34. Kieffer, J., Wright, J.P.: Powder Diffr. 28(S2), S339 (2013). https://doi.org/10.1017/S0885715613000924

    Article  Google Scholar 

  35. Ashiotis, G., Deschildre, A., Nawaz, Z., Wright, J.P., Karkoulis, D., Picca, F.E., Kieffer, J.: J. Appl. Crystallogr. 48(2), 510 (2015). https://doi.org/10.1107/S1600576715004306

    Article  Google Scholar 

  36. Wang, S.Q., Wei, M.X., Wang, F., Cui, X., Dong, C.: Tribol. Lett. 32, 67 (2008). https://doi.org/10.1007/s11249-008-9361-y

    Article  Google Scholar 

  37. Tarasov, S., Belyaev, S.: Wear 257(5–6), 523 (2004). https://doi.org/10.1016/j.wear.2004.02.003

    Article  Google Scholar 

  38. Tian, Y., Borgenstam, A., Hedström, P.: J. Alloys Compd. 766, 131 (2018). https://doi.org/10.1016/j.jallcom.2018.06.326

    Article  Google Scholar 

  39. Shibata, A., Murakami, T., Morito, S., Furuhara, T., Maki, T.: Mater. Trans. 49(6), 1242 (2008). https://doi.org/10.2320/matertrans.MRA2007296

    Article  Google Scholar 

  40. Ping, D., Singh, A., Guo, S., Ohmura, T., Ohnuma, M., Abe, T., Onodera, H.: ISIJ Int. 58(1), 159 (2018). https://doi.org/10.2355/isijinternational.ISIJINT-2017-270

    Article  Google Scholar 

  41. Amiri, M., Khonsari, M.M.: Entropy 12(5), 1021 (2010). https://doi.org/10.3390/e12051021

    Article  Google Scholar 

  42. Makarov, A.V., Korshunov, L.G., Malygina, I.Y., Osintseva, A.L.: Phys. Met. Metallogr. 103(5), 507 (2007). https://doi.org/10.1134/S0031918X07050110

    Article  Google Scholar 

  43. Zhao, J.Z., De, A.K., De Cooman, B.C.: Metall. Mater. Trans. A 32(2), 417 (2001). https://doi.org/10.1007/s11661-001-0273-9

    Article  Google Scholar 

  44. Makarov, A., Skorynina, P., Osintseva, A., Yurovskikh, A., Savrai, R.: Mater. Sci. 4, 80 (2015). https://doi.org/10.17212/1994-6309-2015-4-80-92

    Article  Google Scholar 

  45. Efremenko, V., Shimizu, K., Cheiliakh, A.P., Pastukhova, T., Chabak, Y., Kusumoto, K.: Int. J. Miner. Metall. Mater. 23, 645 (2016). https://doi.org/10.1007/s12613-016-1277-1

    Article  Google Scholar 

  46. Gottstein, G., Argon, A.: Acta Metall. 35(6), 1261 (1987). https://doi.org/10.1016/0001-6160(87)90007-1

    Article  Google Scholar 

  47. Jagarinec, D., Kirbiš, P., Predan, J., Vuherer, T., Gubeljak, N.: Mater. Test. 58, 547 (2016). https://doi.org/10.3139/120.110889

    Article  Google Scholar 

  48. Valiev, R., Islamgaliev, R.K., Alexandrov, I.V.: Prog. Mater Sci. 45, 103 (2000). https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  Google Scholar 

  49. Karavaeva, M.V., Nurieva, S.K., Zaripov, N.G., Ganeev, A.V., Valiev, R.Z.: Met. Sci. Heat Treat. 54(3–4), 155 (2012). https://doi.org/10.1007/s11041-012-9473-8

    Article  Google Scholar 

  50. Gromov, V.E., Ivanov, Y.F., Qin, R.S., Peregudov, O.A., Aksenova, K.V., Semina, O.A.: Mater. Sci. Technol. 33(12), 1 (2017). https://doi.org/10.1080/02670836.2017.1287983

    Article  Google Scholar 

  51. Nakada, N., Ito, H., Matsuoka, Y., Tsuchiyama, T., Takaki, S.: Acta Mater. 58, 895 (2010). https://doi.org/10.1016/j.actamat.2009.10.004

    Article  Google Scholar 

  52. Malinov, L.S., Malinov, V.L., Burova, D.V., Anichenkov, V.V.: J. Frict. Wear 36, 237 (2015). https://doi.org/10.3103/S1068366615030083

    Article  Google Scholar 

  53. Rainforth, W.: Wear 245, 162 (2000). https://doi.org/10.1016/S0043-1648(00)00476-2

    Article  Google Scholar 

  54. Ungar, T., Borbely, A.: Appl. Phys. Lett. 69, 3173 (1996). https://doi.org/10.1063/1.117951

    Article  Google Scholar 

  55. Dragomir, I.C., Ungár, T.: J. Appl. Crystallogr. 35, 556 (2002). https://doi.org/10.1107/S0021889802009536

    Article  Google Scholar 

  56. Ungar, T., Ott, S., Sanders, P.G., Borbely, A., Weertman, J.: Acta Mater. 46, 3693 (1998). https://doi.org/10.1016/S1359-6454(98)00001-9

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Federal Task of Ministry of Education and Science of the Russian Federation (project no. 2019-0931: “Investigations of Metastable Structures Formed on Material Surfaces and Interfaces under Extreme External Impacts”). Structural research was conducted at NSTU Materials Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal I. Emurlaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emurlaev, K.I., Bataev, I.A., Burov, V.G. et al. Structural Evolution of Martensitic Steel During Dry Sliding Friction Studied with Synchrotron Radiation. J Nondestruct Eval 39, 67 (2020). https://doi.org/10.1007/s10921-020-00713-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00713-1

Keywords

Navigation