Skip to main content

Advertisement

Log in

Radiative characteristics of near-surface aerosols at a tropical site: An estimation based on concurrent measurements of their physico-chemical characteristics

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This study is an attempt to estimate the radiative characteristics of aerosols, namely, the scattering coefficient (βsc), absorption coefficient (βab), extinction coefficient (βex), single scattering albedo (ω) and the phase function P(θ), on a seasonal basis, incorporating the concurrent measurements of aerosol mass loading, size distribution and chemical composition at the tropical coastal site, Thiruvananthapuram. The software package Optical Properties of Aerosols and Clouds (OPAC) has been made use for the estimation of the radiative parameters. This paper presents the seasonal features of aerosol chemical composition and their source characteristics also. Along with this, the association between size-resolved number density of aerosols and their chemical characteristics were also investigated through correlation analysis. The location is significantly influenced by human activities as seen from the dominance of the anthropogenic component which is highest in winter (22%) with comparable values in pre-monsoon and post-monsoon and minimum in monsoon (13%). The sea-salt contribution is found to peak in monsoon (~40%) and attain a minimum in winter. The source characterization using principal component analysis along with back-trajectory analysis showed the seasonally changing mixed aerosol sources over the region. Accordingly, the radiative properties of aerosols also exhibit significant seasonal variations. βsc varied from 0.04 to 0.14 km−1 and βab between 0.01 and 0.05 km−1 over a year. The single-scattering albedo exhibited significant seasonal differences being ~0.71 for winter and ~0.89 (0.55 μm) for monsoon season, indicating the presence of more absorbing aerosols in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Aryasree S, Nair P R, Girach I A and Jacob S 2015a Winter time chemical characteristics of aerosols over the Bay of Bengal: Continental influence; Environ. Sci. Pollut. Res., https://doi.org/10.1007/s11356-015-4700-7.

    Book  Google Scholar 

  • Aryasree S, Nair P R, Girach I A and Jacob S 2015b In-situ measured seasonal characteristics of near-surface aerosols over Bay of Bengal and MODIS-retrieved columnar properties: A multicampaign analysis; J. Geophys. Res. Atmos. 120 10548–10568, https://doi.org/10.1002/2015jd023418.

    Article  Google Scholar 

  • Aryasree S and Nair P R 2018 Season-dependent size distribution of aerosols over the tropical coastal environment of south-west India; J. Atmos. Sol. Terr. Phys., https://doi.org/10.1016/j.jastp.2017.12.012.

    Book  Google Scholar 

  • Asnani G C 1993 Tropical meteorology; G. C. Asnani, c/o Indian Institute of Tropical Meteorology, Pashan, Pune 411 008, India.

  • Aswini A R, Hegde P, Nair P R and Aryasree S 2019 Seasonal changes in carbonaceous aerosols over a tropical coastal location in response to meteorological processes; Sci. Total. Environ. 656 1261–1279, https://doi.org/10.1016/j.scitotenv.2018.11.366.

    Article  Google Scholar 

  • Babu S S and Moorthy K K 2002 Aerosol black carbon over a tropical coastal station in India; Geophys. Res. Lett. 29(23) 2098, https://doi.org/10.1029/2002GL015662.

    Article  Google Scholar 

  • Babu S S, Moorthy K K and Satheesh S K 2004 Aerosol black carbon over Arabian Sea during inter monsoon and summer monsoon seasons; Geophys. Res. Lett. 31(6), https://doi.org/10.1029/2003gl018716.

  • Babu S S, Moorthy K K and Satheesh S K 2007 Temporal heterogeneity in aerosol characteristics and the resulting radiative impacts at a tropical coastal station – Part 2: Direct short wave radiative forcing; Ann. Geophys. 25 2309–2320, https://doi.org/10.5194/angeo-25-2309-2007.

    Article  Google Scholar 

  • Babu S S et al. 2013 Trends in aerosol optical depth over Indian region: Potential causes and impact indicators, J. Geophys. Res. Atmos. 118 11,794–11,806, https://doi.org/10.1002/2013JD020507.

    Article  Google Scholar 

  • Babu S S, Kompalli S K and Moorthy K K 2016a Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts; Sci. Total. Environ. 563–564 351–365, https://doi.org/10.1016/j.scitotenv.2016.03.246.

    Article  Google Scholar 

  • Babu S S, Nair V S, Gogoi M M and Moorthy K K 2016b Seasonal variation of vertical distribution of aerosol single scattering albedo over Indian sub-continent: RAWEX aircraft observations; Atmos. Environ., http://dx.doi.org/10.1016/j.atmosenv.2015.09.0411352.

    Book  Google Scholar 

  • Babu S S 2005 Investigations of atmospheric aerosol characteristics and shortwave radiative forcing over distinct environments of India; PhD Thesis, University of Kerala.

  • Bergstrom R W, Pilewskie P, Russell P B, Redemann J, Bond T C, Quinn P K and Sierau B 2007 Spectral absorption properties of atmospheric aerosols; Atmos. Chem. Phys. 7 5937–5943, https://doi.org/10.5194/acp-7-5937-2007.

    Article  Google Scholar 

  • Census 2011 Primary censes abstracts, Govt of India, http://censusindia.gov.in/2011-common/censusdataonline.html.

  • Chakraborthy A and Gupta T 2009 Chemical Characterization of Submicron Aerosol in Kanpur Region: A Source Apportionment Study; Inter. Civil Environ. Eng. 3 3, ISNI: 0000000091950263.

  • Charlson R J, Schwartz S E, Hales J M, Cess R D, Coakley J A Jr, Hansen J E and Hoffman D J 1992 Climate forcing by anthropogenic aerosols; Science 255 423–430, https://doi.org/10.1126/science.255.5043423.

    Article  Google Scholar 

  • Chin M, Diehl T, Ginoux P and Malm W 2007 Intercontinental transport of pollution and dust aerosols: Implications for regional air quality; Atmos. Chem. Phys. 7 5501–5517, https://doi.org/10.5194/acp-7-5501-2007.

    Article  Google Scholar 

  • Chow C, Watson J G, Kuhns H, Etyemezian V, Lowenthal D H, Crow D, Kohl S D, Engelbrecht J P and Green M C 2004 Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study Judith; Chemosphere 54 185–208.

    Article  Google Scholar 

  • Claeys M, Roberts G, Mallet M, Arndt J, Sellegri K, Sciare J, Wenger J and Sauvage B 2017 Optical, physical and chemical properties of aerosols transported to a coastal site in the western Mediterranean: A focus on primary marine aerosols; Atmos. Chem. Phys. 17 7891–7915, https://doi.org/10.5194/acp-17-7891-2017.

    Article  Google Scholar 

  • Colbeck I 2008 Environmental Chemistry of Aerosols; Blackwell Publishing Ltd., ISBN: 9781405139199, https://doi.org/10.1002/978144430z388.

  • d’Almeida G A, Koepke P and Shettle E P 1991 Atmospheric Aerosols: Global Climatology and Radiative Characteristics, A. Deepak, Hampton, Va, 561p.

    Google Scholar 

  • David L M and Nair P R 2011 Diurnal and seasonal variability of surface ozone and NOx at a tropical coastal site: Association with mesoscale and synoptic meteorological conditions; J. Geophys. Res. 116 D10303, https://doi.org/10.1029/2010jd015076.

    Article  Google Scholar 

  • David L M, Ravishankara A R, Kodros J K, Venkataraman C, Sadavarte P J and Pierce R 2018 Aerosol optical depth over India; J. Geophys. Res. Atmos. 123 3688–3703, https://doi.org/10.1002/2017JD027719.

    Article  Google Scholar 

  • Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N and Vitart F 2011 The ERA-Interim reanalysis: Configuration and performance of the data assimilation system; Quart. J. Roy. Meteor. Soc. 137 553–597, https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Denjean C et al. 2016 Size distribution and optical properties of African mineral dust after intercontinental transport; J. Geophys. Res. Atmos. 121 7117–7138, https://doi.org/10.1002/2016jd024783.

    Article  Google Scholar 

  • Dickerson R, Kondragunta S, Stenchikov G, Civerolo K, Doddridge B and Holben B 1997 The impact of aerosol on solar UV radiation and photochemical smog; Science (New York, NY) 278 827–830, https://doi.org/10.1126/science.278.5339.827.

  • Draxler R R and Rolph G D 2003 HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.

  • Duce R A, Arimoto R, Ray B J, Unni C K and Harder P J 1983 Atmospheric trace elements at Enewetak Atoll 1. Concentrations, sources and temporal variability; J. Geophys. Res. 88 5321–5342.

    Article  Google Scholar 

  • Dumka U C, Satheesh S K, Pant P, Hegde P and Moorthy K K 2006 Surface changes in solar irradiance due to aerosols over central Himalayas; Geophys. Res. Lett. 33 L20809, https://doi.org/10.1029/2006gl027814.

    Article  Google Scholar 

  • Erisman J W and Schaap M 2004 The need for ammonia abatement with respect to secondary PM reductions in Europe; Environ. Pollut. 129 159–163.

    Article  Google Scholar 

  • Feng L et al. 2017 Insight into generation and evolution of sea-salt aerosols from field measurements in diversified marine and coastal atmospheres; Sci. Rep. 7 41260; https://doi.org/10.1038/srep41260.

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D W, Haywood J, Lean J, Lowe D C, Myhre G, Nganga J, Prinn R, Raga G, Schulz M and Dorland R V 2007 Changes in atmospheric constituents and in radiative forcing; In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the International Panel on Climate Change (eds) Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M and Miller H L, Cambridge University Press, Cambridge, UK and New York, NY.

  • Ganguly D, Jayaraman A and Gadhavi H 2006 Physical and optical properties of aerosols over an urban location in western India: Seasonal variabilities; J. Geophys. Res. 111 D24206, https://doi.org/10.1029/2006jd007392.

    Article  Google Scholar 

  • Gadhavi H and Jayaraman A 2010 Absorbing aerosols: Contribution of biomass burning and implications for radiative forcing; Ann. Geophys. 28 103–111, https://doi.org/10.5194/angeo-28-103-2010.

    Article  Google Scholar 

  • Gautam R, Hsu N C, Lau K M, Tsay S C and Kafatos M 2009 Enhanced pre-monsoon warming over the Himalayan Gangetic region from 1979 to 2007; Geophys. Res. Lett. 36 L07704, https://doi.org/10.1029/2009gl037641.

    Article  Google Scholar 

  • George S K, Nair P R, Parameswaran K, Jacob S and Abraham A 2008 Seasonal trends in chemical composition of aerosols at a tropical coastal site of India; J. Geophys. Res. 113, https://doi.org/10.1029/2007jd009507.

  • George S K, Nair P R, Parameswaran K and Jacob S 2011 Wintertime chemical composition of aerosols at a rural location in the Indo-Gangetic Plains; J. Atmos. Sol. Terr. Phys. 73, https://doi.org/10.1016/j.jastp.2011.04.005.

  • Goren T and Rosenfeld D 2014 Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components in marine stratocumulus; Atmos. Res. 138 378–393, https://doi.org/10.1016/j.atmosres.2013.12.008.

    Article  Google Scholar 

  • Grimm H and Eatough D J 2009 Aerosol measurement: The use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction; J. Air. Waste Manag. 59(1) 101–107, https://doi.org/10.3155/1047-3289.59.1.101.

    Article  Google Scholar 

  • Hansen J, Sato M and Ruedy R 1997 Radiative forcing and climate response; J. Geophys. Res. 102(D6) 6831–6864.

    Article  Google Scholar 

  • Harrison and vanGrieken J Wiley 1998 Atmospheric particles; University of Michigan, Vol. 5, ISBN: 0471959359, 9780471959359.

  • Haywood J and Boucher O 2000 Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review; Rev. Geophys. 38 513–543.

    Article  Google Scholar 

  • Hegde P and Kawamura K 2012 Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in central Himalayan aerosols; Atmos. Chem. Phys. 12 6645–6665, https://doi.org/10.5194/acp-12-6645-2012.

    Article  Google Scholar 

  • Hegde P, Kawamura K, Girach I A and Nair P R 2015 Characterisation of water-soluble organic aerosols at a site on the southwest coast of India; J. Atmos. Chem. 73 181–205, http://dx.doi.org/10.1007/s10874-015-9322-4.

    Article  Google Scholar 

  • Hess M, Koepke P and Schult I 1998 Optical properties of aerosols and clouds: The software package OPAC; Bull. Am. Meteor. Soc. 79(5) 831e842.

  • Hopkins R J, Lewis K, Desyaterik Y, Wang Z, Tivanski A V, Arnott W P, Laskin A and Gilles M K 2007 Correlations between optical, chemical, and physical properties of biomass burn aerosols; Geophys. Res. Lett. 34 L18806.

    Article  Google Scholar 

  • Ianniello A, Spataro F, Esposito G, Allegrini I, Rantica E, Ancora M P, Hu M and Zhu T 2010 Occurrence of gas phase ammonia in the area of Beijing (China); Atmos. Chem. Phys. 10 9487–9503, https://doi.org/10.5194/acp-10-9487-2010.

    Article  Google Scholar 

  • IPCC 2013 Climate change 2013: The physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds) Stocker T F, Qin D, Plattner G-K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535p, https://doi.org/10.1017/cbo9781107415324.

  • Jacks G, Sharma V P, Torrsander P and Aberg G 1994 Origin of sulphur in soil and water in a Pre-cambrian terrain, South India; Geochem. J. 28 351–358.

    Article  Google Scholar 

  • Jayaraman A, Lubin D, Ramachandran S, Ramanathan V, Woodbridge E, Collins W and Zalpuri K S 1998 Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January–February 1996 pre-INDOEX cruise; J. Geophys. Res. 103 13,827–13,836.

    Article  Google Scholar 

  • Jethva H, Satheesh S K and Srinivasan J 2005 Seasonal variability of aerosols over the Indo-Gangetic basin; J. Geophys. Res. 110 D21204, https://doi.org/10.1029/2005jd005938.

    Article  Google Scholar 

  • Johansen A M, Siefert R L and Hoffmann M R 1999 Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: Anions and cations; J. Geophys. Res. 104 26,325–26,347.

    Article  Google Scholar 

  • Kahn 2012 Reducing the uncertainties in direct aerosol radiative forcing; Surv. Geophys. 33(3–4) 701–721.

    Article  Google Scholar 

  • Kandler K, Schütz L, Deutscher C, Ebert M, Hofmann H, Jäckell S, Jaenicke R, Knippertz P, Lieke K, Massling A, Petzold A, Schladitz A, Weinzierl B, Wiedensohler A, Zorn S and Weinbruch S 2009 Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006; Tellus B. 61(1) 32–50, https://doi.org/10.1111/j.1600-0889.2008.00385.x.

    Article  Google Scholar 

  • Kavitha M, Nair P R, Girach I A, Aneesh S, Sijikumar S and Renju R 2018 Diurnal and seasonal variation in surface methane at a tropical coastal station: Role of mesoscale meteorology; Sci. Total Environ. 631–632 1472–1485.

    Article  Google Scholar 

  • Kedia S, Ramachandran S, Holben B N and Tripathi S N 2014 Quantification of aerosol type, and sources of aerosols over the Indo Gangetic Plain; Atmos. Environ., http://dx.doi.org/10.1016/j.atmosenv.2014.09.022.

    Book  Google Scholar 

  • Kokhanovsky A 2008 Aerosol Optics: Light Absorption and Scattering by Particles in the Atmosphere; Springer Science & Business Media.

  • Kompalli S K, Moorthy K K and Babu S S 2013 Rapid response of atmospheric BC to anthropogenic sources: Observational evidence; Atmos. Sci. Lett. 15 166–171 (2014), https://doi.org/10.1002/asl2.483.

    Article  Google Scholar 

  • Kulshrestha A, Massey D D, Masih J and Taneja A 2014 Source characterization of trace elements in indoor environments at urban, rural and roadside sites in a semi-arid region of India; Aerosol. Air. Qual. Res. 14 1738–1751, https://doi.org/10.4209/aaqr.2013.05.0147.

    Article  Google Scholar 

  • Lawrence M G and Lelieveld J 2010 Atmospheric pollutant outflow from southern Asia: A review; Atmos. Chem. Phys. 10, https://doi.org/10.5194/acp-10-11017.

  • Levy R C, Mattoo S, Munchak L A, Remer L A, Sayer A M, Patadia F and Hsu C 2013 The Collection 6 MODIS aerosol products over land and ocean; Atmos. Meas. Tech. 6, https://doi.org/10.5194/amt-6-2989-2013.

  • Malm W C, Sisler J F, Huffman D, Eldred R A and Cahill T A 1994 Spatial and seasonal trends in particle concentration and optical extinction in the United States; J. Geophys. Res. 99(D1) 1347–1370.

    Article  Google Scholar 

  • Man C K and Shih M Y 2001 Identification of sources of PM10 aerosols in Hong Kong by wind trajectory analysis; J. Aerosol Sci. 32 1213–1223, https://doi.org/10.1016/s0021‐8502(01)00052‐0.

    Article  Google Scholar 

  • Maxwell-Meier K, Weber R, Song C, Orsini D, Ma Y, Carmichael G R and Streets D G 2004 Inorganic composition of fine particles in mixed mineral dust–pollution plumes observed from airborne measurements during ACE-Asia; J. Geophys. Res. 109 D19S07, https://doi.org/10.1029/2003jd004464.

  • McCartney E J 1976 Optics of the Atmosphere; John Wiley, New York, ISBN 0471015261, 9780471015260.

    Google Scholar 

  • Mishra M K, Rajeev K, Thampi B V and Nair A K M 2013 Annual variations of the altitude distribution of aerosols and effect of long-range transport over the southwest Indian peninsula; Atmos. Environ. 81 51e, http://dx.doi.org/10.1016/j.atmosenv.2013.08.066.

    Article  Google Scholar 

  • Moorthy K K, Nair P R and Murthy B V K 1991 Size distribution of coastal aerosols: Effects of lo cal sources and sinks; J. Appl. Meteorol. 30 844–852.

    Article  Google Scholar 

  • Moorthy K K, Pillai P S and Babu S S 2003 Influence of changes in prevailing synoptic conditions on the response of aerosol characteristics to land/sea breeze circulation at a coastal station; Bound. Layer Meteorol. 108 145–161.

    Article  Google Scholar 

  • Moorthy K K, Babu S S and Satheesh S K 2007 Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station. Part 1: Microphysical and optical properties; Ann. Geophys. 25 2293–2308.

    Article  Google Scholar 

  • Moorthy K K, Babu S S, Manoj M R and Satheesh S K 2013 Buildup of aerosols over the Indian Region, Geophys. Res. Lett. 40 1011–1014, https://doi.org/10.1002/grl.50165.

    Article  Google Scholar 

  • Mor V, Dhankhar R, Attri S D, Soni V K, Sateesh M and Taneja K 2017 Assessment of aerosols optical properties and radiative forcing over an urban site in north-western India, Environ. Tech. 38(10) 1232–1244.

    Article  Google Scholar 

  • Muller K, Lehmann S, van Pinxteren D, Gnauk T, Niedermeier N, Wiedensohler A and Herrmann H 2010 Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive; Atmos. Chem. Phys. 10 2709–2721.

    Article  Google Scholar 

  • Myhre G, Samset B H, Schulz M, Balkanski Y, Bauer S, Berntsen T K, Bian H, Bellouin N, Chin M, Diehl T, Easter R C, Feichter J, Ghan S J, Hauglustaine D, Iversen T, Kinne S, Kirkevåg A, Lamarque J F, Lin G, Liu X, Lund M T, Luo G, Ma X, van Noije J E, Penner P J, Rasch A, Ruiz ØSeland R.B, Skeie P, Stier T, Takemura K, Tsigaridis T, Wang P, Wang Z, Xu L, Yu H, Yu F, Yoon J H, Zhang K, Zhang H and Zhou C 2013 Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations; Atmos. Chem. Phys. 13 1853–1877, https://doi.org/10.5194/acp-13-1853-2013.

  • Nair P R 1993 Studies on atmospheric aerosols; PhD Thesis, University of Kerala.

  • Nair P R, Revathy S A, David L M, Girach I A, Kavitha M 2018 Decadal changes in surface ozone at the tropical station Thiruvananthapuram (8.542°N, 76.858°E), India: Effects of anthropogenic activities and meteorological variability; Environ. Sci. Pollut. R., https://doi.org/10.1007/s11356-018-1695-x.

  • Nair P R, George S K, Parameswaran K, Aloysius M, Alappattu D P, Mohan M and Kunhikrishnan P K 2009 Short-term changes in the aerosol characteristics at Kharagpur (22°19′N, 87°19′E) during winter; J. Atmos. Sol. Terr. Phys. 71 1771–1783.

    Article  Google Scholar 

  • Nair P R, George S K, Aryasree S and Jacob S S 2014 Chemical composition of aerosols over Bay of Bengal during pre-monsoon: Dominance of anthropogenic sources; J. Atmos. Sol. Terr. Phys. 109 54–65.

    Article  Google Scholar 

  • Nair V S, Babu S S and Moorthy K K 2008 Aerosol characteristics in the marine atmospheric boundary layer over the Bay of Bengal and Arabian Sea during ICARB: Spatial distribution and latitudinal and longitudinal gradients; J. Geophys. Res. 113 D15208, https://doi.org/10.1029/2008jd009823.

    Article  Google Scholar 

  • Nair V S, Satheesh S K, Moorthy K K, Babu S S, George S K and Nair P R 2010 Surprising observation of large anthropogenic aerosol fraction over the near-pristine southern Bay of Bengal: Climate implications; J. Geophys. Res. Atmos. 115 D21201, https://doi.org/10.1029/2010jd013954.

    Article  Google Scholar 

  • Nair V S, Solmon F, Giorgi F, Mariotti L, Babu S S and Moorthy K K 2013 Simulation of south Asian aerosols for regional climate studies; J. Geophys. Res. Atmos., https://doi.org/10.1029/2011jd016711.

    Book  Google Scholar 

  • Olmez I, Beal J W and Villaume J F 1994 A new approach to understanding multiplesource groundwater contamination: Factor analysis and chemical mass balances; Water Res. 28 1095–1101, https://doi.org/10.1016/0043-1354(94)90195-3.

  • Parameswaran K, Rajan R, Vijayakumar G, Rajeev K, Moorthy K K, Nair P R and Satheesh S K 1998 Seasonal and long-term variation of aerosol content in the atmospheric mixing region at a tropical station on the Arabian Sea coast; J. Atmos. Sol. Terr. Phys. 60 17–25.

    Article  Google Scholar 

  • Pierce J R and Adams P J 2006 Global evaluation of CCN formation by direct emission of sea-salt and growth of ultrafine sea-salt; J. Geophys. Res. 11 D06203.

    Google Scholar 

  • Pillai P S and Moorthy K K 2001 Aerosol mass-size distributions at a tropical coastal environment: Response to mesoscale and synoptic processes; Atmos. Environ. 35 4099–4112.

    Article  Google Scholar 

  • Podgorny I A, Conant W C, Ramanathan V and Satheesh S K 2000 Aerosol modulation of atmospheric and solar heating over the tropical Indian Ocean; Tellus B 52 947–958.

    Article  Google Scholar 

  • Prakash J W J, Ramachandran R, Nair K N, Sen Gupta K and Kunhikrishnan P K 1992 On the structure of sea breeze front observed near the coastline of Thumba, India; Bound. Layer Meteorol. 59 111–124.

    Article  Google Scholar 

  • Prospero 2002 The Chemical and Physical Properties of Marine Aerosols: An Introduction; https://doi.org/10.1007/978-3-662-04935-8_2.

  • Quinn P K, Miller T L, Bates T S, Ogren J A, Andrews E and Shaw G E 2002 A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska; J. Geophys. Res. 107, https://doi.org/10.1029/2001jd001248.

  • Radhakrishnan S R, Satyanarayana M, Krishnakumar V, Mahadevan V P and Reghunath K 2009 Lidar measurements on aerosol characteristics at the tropical stations Trivandrum (8.330 N, 770 E) and Gadanki (13.50 N, 79.20 E); IEEE, 9781-4244-3941-6/09.

  • Rajeev K, Parameswaran K, Thampi B V, Mishra M K, Nair A K M and Meenu S 2010 Altitude distribution of aerosols over Southeast Arabian Sea coast during pre-monsoon season: Elevated layers, long-range transport and atmospheric radiative heating; Atmos. Environ. 44 2597–2604.

    Article  Google Scholar 

  • Ram K, Sarin M M and Tripathi S N 2012 Temporal trends in atmospheric PM2.5, PM10, EC, OC, WSOC and optical properties of aerosols from Indo-Gangetic Plain: Impact of biomass burning emissions; Environ. Sci. Technol. 46 686–695.

    Article  Google Scholar 

  • Ram K, Singh S, Sarin M M, Srivastava A and Tripathi S 2016 Variability in aerosol optical properties over an urban site, Kanpur, in the Indo-Gangetic Plain: A case study of fog and haze events; Atmos. Res. 174, https://doi.org/10.1016/j.atmosres.2016.01.014.

  • Ramachandran S and Kedia S 2012 Radiative effects of aerosols over Indo-Gangetic plain: Environmental (urban vs. rural) and seasonal variations; Environ. Sci. Pollut. Res. 19(6) 2159–2171, https://doi.org/10.1007/s11356-011-0715-x.

  • Ramanathan V et al. 2001 Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo Asian haze; J. Geophys. Res. 106 28,371–28,398.

    Article  Google Scholar 

  • Rastogi N and Sarin M M 2005 Long-term characterization of ionic species in aerosols from urban and high-altitude sites in western India: Role of mineral dust and anthropogenic source; Atmos. Environ. 39 5541–5554.

    Article  Google Scholar 

  • Rastogi N and Sarin M M 2006 Chemistry of aerosols over a semi-arid region: Evidence for acid neutralization by mineral dust; Geophys. Res. Lett. 33 L23815, https://doi.org/10.1029/2006gl027708.

    Article  Google Scholar 

  • Rengarajan R, Sarin M M and Sudheer A K 2007 Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India; J. Geophys. Res. 112 D21307, https://doi.org/10.1029/2006jd008150.

    Article  Google Scholar 

  • Roger J C, Guinot B, Cachier H, Mallet M, Dubovik O and Yu T 2009 Aerosol complexity in megacities: From size-resolved chemical composition to optical properties of the Beijing atmospheric particles; Geophys. Res. Lett. 36(18).

  • Russell P B, Bergstrom R W, Shinozuka Y, Clarke A D, DeCarlo P F, Jimenez J L, Livingston J M, Redemann J, Dubovik O and Strawa A 2010 Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition; Atmos. Chem. Phys. 10 1155–1169, https://doi.org/10.5194/acp-10-1155-2010.

    Article  Google Scholar 

  • Santosh M and Masuda H 1991 Reconnaissance oxygen and sulfur isotopic mapping of Pan-African alkali granites and syenites in the southern Indian Shield, Geochem. J. 25 173–185.

    Article  Google Scholar 

  • Schladitz A, Muller T, Nowak A, Kandler K, Lieke K and co-authors 2011 In situ aerosol characterization at Cape Verde. Part 1: Particle number size distributions, hygroscopic growth and state of mixing of the marine and Saharan dust aerosol; Tellus B, https://doi.org/10.1111/j.1600-0889.2011.00569.x.

  • Seinfeld J H and Pandis S N 2006 Atmospheric Chemistry and Physics; John Wiley, New York, ISBN: 978-1-118-94740-1.

    Google Scholar 

  • Singh A, Rastogi N, Patel A, Satish R V and Singh D 2016 Size-segregated characteristics of carbonaceous aerosols over the northwestern Indo-Gangetic Plain: Year around temporal behavior; Aerosol. Air. Qual. Res. 16 1615–1624, https://doi.org/10.4209/aaqr.2016.01.0023.

    Article  Google Scholar 

  • Solomon S et al. (ed.) 2007 Climate Change 2007. Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press, New York. Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Technical Summary and Chapter 10 (Global Climate Projections).

  • Soni K, Singh S, Bano T, Tanwar R S and Nath S 2010 Variations in single scattering Albedo and Angstrom absorption exponent during different seasons over Delhi; Atmos. Environ. 44(35) 4355–4363.

    Article  Google Scholar 

  • Soni P, Tripathi S N, Rajesh T A and Tripathi S 2017 Radiative effects of black carbon aerosols on Indian monsoon: A study using WRF-Chem model; Theor. Appl. Climatol., https://doi.org/10.1007/s00704-017-2057-1.

    Book  Google Scholar 

  • Srivastava A K, Devara P C S, Rao Y J, Bhavanikumar Y and Rao D N 2008 Aerosol optical depth, ozone and water vapour measurements over Gadanki: A tropical station in peninsular India; Aerosol. Air Qual. Res. 8(4) 459–476.

    Article  Google Scholar 

  • Srivastava A K, Singh S, Tiwari S and Bisht D S 2012 Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo Gangetic basin; Environ. Sci. Pollut. Res. 19 1144–1158.

    Article  Google Scholar 

  • Srivastava R, Ramachandran S and Rajesh T A 2016 Aerosol mixing over an urban region: Radiative effects; Quart. J. Roy. Meteor. Soc. 142 1732–1744, https://doi.org/10.1002/qj.2769.

    Article  Google Scholar 

  • Srivastava P, Dey S, Srivastava A, Singh S and Tiwari S 2018 Most probable mixing state of aerosols in Delhi NCR, northern India; Atmos. Res. 200 88–96, 10.1016/j.atmosres.2017.09.018.

    Article  Google Scholar 

  • Stevens J 1996 Applied Multivariate Statistics for the Behavioral Sciences (3rd edn); Mahwah, Erlbaum, NJ.

    Google Scholar 

  • Subrahamanyam D B, Gupta K Sen, Ravindran S and Krishnan P 2001 Study of sea breeze and land breeze along the west coast of Indian sub-continent over the latitude range 15°–8°N during INDOEX IFP-99 (SK-141) cruise; Curr. Sci. 80 85–88, https://doi.org/10.2307/24105134.

    Article  Google Scholar 

  • Turpin B J and Lim H J 2001 Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass; Aerosol. Sci. Tech. 35 602–610.

    Google Scholar 

  • Walker J T, Whitall D R, Robarge W and Paerl H W 2004 Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density; Atmos. Environ. 38(9) 1235–1246, 1352–2310, https://doi.org/10.1016/j.atmosenv.2003.11.027.

  • Wang Y L, Liu X Y, Song W, Yang W, Han B, Dou X Y, Zhao X, Song Z L, Cong-Qiang Liu and Zhi-Peng Bai 2017 Source appointment of nitrogen in PM2.5 based on bulk δ15N signatures and a Bayesian isotope mixing model; Tellus B 69(1) 1299672, https://doi.org/10.1080/16000889.2017.1299672.

  • Wolf M E and Hidy G M 1997 Aerosols and climate: Anthropogenic emissions and trends for 50 years; J. Geophys. Res. 102 1113–1121.

    Google Scholar 

  • Wu Z J, Hu M, Lin P, Liu S and Wehner B et al. 2008 Particle number size distribution in the urban atmosphere of Beijing, China; Atmos. Environ. 42 7967–7980, https://doi.org/10.1016/j.atmosenv.2008.06.022.

  • Wolff 1967 On the nature of nitrate in coarse continental aerosols; Atmos. Environ. 18(5) 977–981.

    Article  Google Scholar 

  • Yeatman S G, Spokes L J and Jickells T D 2001 Comparisons of coarse-mode aerosol nitrate and ammonium at two polluted coastal sites; Atmos. Environ. 35(7) 1321–1335, https://doi.org/10.1016/S1352-2310(00)00452-0.

    Article  Google Scholar 

  • Zhang X Y, Gong S L, Shen Z X, Mei F M, Xi X, Liu L C, Zhou Z J, Wang D, Wang Y Q and Cheng Y 2001 Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations; J. Geophys. Res. 108(D9) 4261, https://doi.org/10.1029/2002jd002632.

  • Zhang R, Tie X and Bond D W 2003 Impacts of anthropogenic and natural NOx sources over the U.S. on tropospheric chemistry; PNAS 100(4), https://doi.org/10.1073/pnas.252763799.

  • Zhang X L, Wu G J, Zhang C L, Xu T L and Zhou Q Q 2015 What is the real role of iron oxides in the optical properties of dust aerosols? Atmos. Chem. Phys. 15 12,159–12,177, https://doi.org/10.5194/acp-15-12159-2015.

    Article  Google Scholar 

Download references

Acknowledgements

ERA-Interim Reanalysis data is obtained from site http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. Acknowledgements are due to the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.arl.noaa.gov/ready.html) used for the simulation of air mass trajectories. One of the authors, Dr S Aryasree is thankful to ISRO for her research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Aryasree.

Additional information

Communicated by Suresh Babu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryasree, S., Nair, P.R. & Hegde, P. Radiative characteristics of near-surface aerosols at a tropical site: An estimation based on concurrent measurements of their physico-chemical characteristics. J Earth Syst Sci 129, 185 (2020). https://doi.org/10.1007/s12040-020-01444-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01444-7

Keywords

Navigation