Skip to main content
Log in

Spectra of PT-symmetric fractional Schrödinger equations with multiple quantum wells

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We evaluate the eigenvalues of a type of one-dimensional PT-symmetric fractional Schrödinger equation with multiple quantum wells potential profile. By using a finite-difference scheme, we solve the fractional Schrödinger equation and present the algorithm. We study the effects of different parameters on the pairwise coalescence of eigenvalues. We show that by using the mentioned parameters, we can tune the position of the pairwise coalescence of the eigenvalues and the surface area between the two eigenvalues that intersect. An interesting phenomenon is that a small value of the fractionality as much as 0.15 can destroy the pairwise coalescence of eigenvalues and produce a single energy level. We also, consider the Hofstadter butterfly of a PT-symmetric one-dimensional system and show that by increasing the intensity of the potential imaginary part, we can kill the butterfly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Zeng, J., Lan, Y.: Two-dimensional solitons in PT linear lattice potentials. Phys. Rev. E 85, 047601 (2012)

    Google Scholar 

  3. Klaiman, S., Günther, U., Moiseyev, N.: Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Ahmed, Z., Ghosh, D., Amal Nathan, J., Parkar, G.: Accidental crossings of eigenvalues in the one-dimensional complex PT-symmetric Scarf-II potential. Phys. Lett. A 379, 2424–2429 (2015)

    MATH  Google Scholar 

  5. Chen, H., Hu, S.: The solitons in parity-time symmetric mixed Bessel linear potential and modulated nonlinear lattices. Opt. Commun. 332, 169–176 (2014)

    Google Scholar 

  6. Wen, Z.-C., Yan, Z.: Dynamical behaviors of optical solitons in parity–time (PT) symmetric sextic anharmonic double-well potentials. Phys. Lett. A 379, 2025–2029 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Ahmed, Z.: Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT -invariant potential. Phys. Lett. A 282, 343–348 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Longhi, S.: Bloch oscillations in complex crystals with P T symmetry. Phys. Rev. Lett. 103, 123601 (2009)

    Google Scholar 

  9. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional Invisibility Induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    Google Scholar 

  10. He, Y., Zhu, X., Mihalache, D., Liu, J., Chen, Z.: Lattice solitons in PT-symmetric mixed linear-nonlinear optical lattices. Phys. Rev. A 85, 013831 (2012)

    Google Scholar 

  11. Ren, X., Wang, H., Li, Z., Wang, H.C.: Solitons supported by two-dimensional mixed linear-nonlinear complex optical lattices. Opt. Commun. 356, 230–235 (2015)

    Google Scholar 

  12. Zhu, X., Wang, H., Zheng, L.-X., Li, H., He, Y.-J.: Gap solitons in parity-time complex periodic optical lattices with the real part of superlattices. Opt. Lett. 36, 2680 (2011)

    Google Scholar 

  13. Wang, H., Wang, J.: Defect solitons in parity-time periodic potentials. Opt. Express 19, 4030 (2011)

    Google Scholar 

  14. Hu, S., Ma, X., Lu, D., Zheng, Y., Hu, W.: Defect solitons in parity-time-symmetric optical lattices with nonlocal nonlinearity. Phys. Rev. A 85, 043826 (2012)

    Google Scholar 

  15. Dmitriev, S.V., Sukhorukov, A.A., Kivshar, Y.S.: Binary parity-time-symmetric nonlinear lattices with balanced gain and loss. Opt. Lett. 35, 2976–2978 (2010)

    Google Scholar 

  16. Bağcı, M., Bakırtaş, İ., Antar, N.: Fundamentals solitons in parity-time symmetric lattice with a vacancy defect. Opt. Commu. 356, 472–481 (2015)

    Google Scholar 

  17. Yuce, C.: PT symmetric Aubry-Andre model. Phys. Lett. 378, 2024–2028 (2014)

    Google Scholar 

  18. Longhi, S.: Spectral singularities and Bragg scattering in complex crystals. Phys. Rev. A 81, 022102 (2010)

    Google Scholar 

  19. Miri, M.A., Aceves, A.B., Kottos, T., Kovanis, V., Christodoulides, D.N.: Bragg solitons in nonlinear PT-symmetric periodic potentials. Phys. Rev. A 86, 033801 (2012)

    Google Scholar 

  20. Abdullaev, FKh, Brazhnyi, V.A., Salerno, M.: Scattering of gap solitons by PT -symmetric defects. Phys. Rev. A 88, 043829 (2013)

    Google Scholar 

  21. Klaiman, S., Gunther, U., Moiseyev, N.: Visualization of branch points in P T-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Bendix, O., Fleischmann, R., Kottos, T., Shapiro, B.: Exponentially fragile PT symmetry in lattices with localized eigenmodes. Phys. Rev. Lett. 103, 030402 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, Z., Yang, L., Feng, J., Sheng, J., Zhang, Y., Zhang, Y., Xiao, M.: Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations. Laser Photonics Rev. 12, 1800155 (2018)

    Google Scholar 

  24. Feng, L., Xu, Y.-L., Fegadolli, W.S., Lu, M.-H., Oliveira, J.E.B., Almeida, V.R., Chen, Y.-F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108 (2013)

    Google Scholar 

  25. Peng, B., Ozdemir, S.K., Lei, F., Moni, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014)

    Google Scholar 

  26. Chang, L., Jiang, X., Hua, S., Yang, C., Wen, J., Jiang, L., Li, G., Wang, G., Xiao, M.: Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524 (2014)

    Google Scholar 

  27. Wan, W., Chong, Y., Ge, L., Noh, H., Stone, A.D., Cao, H.: Time-reversed lasing and interferometric control of absorption. Science 331, 889 (2011)

    Google Scholar 

  28. Sun, Y., Tan, W., Li, H.-Q., Li, J., Chen, H.: Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014)

    Google Scholar 

  29. Kartashov, Y.V., Hang, C., Konotop, V.V., Vysloukh, V.A., Huang, G., Torner, L.: Suppression and restoration of disorder-induced light localization mediated by PT -symmetry breaking. Laser Photon. Rev. 10, 100 (2016)

    Google Scholar 

  30. Bender, C.M., Berry, M., Meisinger, P.N., Savage, V.M., Simsek, M.: Complex WKB analysis of energy-level degeneracies of non-Hermitian Hamiltonians. J. Phys. A: Math. Gen. 34, L31–L36 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Egrifes, H., Sever, R.: Bound states of the Dirac equation for the PT-symmetric generalized Hulthén potential by the Nikiforov-Uvarov method. Phys. Lett. A 344, 117–126 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Cole, J.T., Makris, K.G., Musslimani, Z.H., Christodoulides, D.N., Rotter, S.: Twofold PT symmetry in doubly exponential optical lattices. Phys. Rev. A 93, 013803 (2016)

    Google Scholar 

  33. Garmon, S., Gianfreda, M., Hatano, N.: Bound states, scattering states, and resonant states in PT -symmetric open quantum systems. Phys. Rev. A 92, 022125 (2015)

    MathSciNet  Google Scholar 

  34. Vázquez-Candanedo, O., Izrailev, F.M., Christodoulides, D.N.: Spectral and transport properties of the PT-symmetric dimer model. Physica E 72, 7–16 (2015)

    Google Scholar 

  35. Vázquez-Candanedo, O., Hernández-Herrejón, J.C., Izrailev, F.M., Christodoulides, D.N.: Gain-or loss-induced localization in one-dimensional PT-symmetric tight-binding models. Phys. Rev. A 89(1), 013832 (2014)

    Google Scholar 

  36. Longhi, S., Della Valle, G.: Optical lattices with exceptional points in the continuum. Phys. Rev. A 89, 052132 (2014)

    Google Scholar 

  37. Laughlin, R.B.: Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983)

    Google Scholar 

  38. Rokhinson, L.P., Liu, X., Furdyna, J.K.: The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles. Nat. Phys. 6, 795 (2012)

    Google Scholar 

  39. Olivar-Romero, F., Rosas-Ortiz, O.: Factorization of the quantum fractional oscillator. J. Phys: Conf. Ser. 698, 012025 (2016)

    Google Scholar 

  40. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135 (2000)

    MATH  Google Scholar 

  42. Yao, X., Liu, X.: Solitons in the fractional Schrödinger equation with parity-time-symmetric lattice potential. Photonics Res. 6, 875 (2018)

    Google Scholar 

  43. Huang, C., Deng, H., Zhang, W., Ye, F., Dong, L.: Fundamental solitons in the nonlinear fractional Schrödinger equation with a PT -symmetric potential. EPL 122, 24002 (2018)

    Google Scholar 

  44. Stickler, B.A.: Potential condensed-matter realization of space-fractional quantum mechanics: the one-dimensional Lévy crystal. Phys. Rev. E 88, 012120 (2013)

    Google Scholar 

  45. Zhang, Y., Liu, X., Belić, M.R., Zhong, W., Zhang, Y., Xiao, M.: Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys. Rev. Lett. 115, 180403 (2015)

    Google Scholar 

  46. Zhang, Y., Zhong, H., Belic, M.R., Zhu, Y., Zhong, W., Zhang, Y., Christodoulides, D.N., Xiao, M.: PT symmetry in a fractional Schrödinger equation. Laser Photonics Rev. 10, 1–6 (2016)

    Google Scholar 

  47. Lacroix, S.F.: Traite du calcul differentiel et du calcul integral. Mme, VeCourcier, Paris (1819)

    Google Scholar 

  48. Ponomarenko, L., Gorbachev, R., Yu, G., Elias, D., Jalil, R., Patel, A., Mishchenko, A., Mayorov, A., Woods, C., Wallbank, J., Mucha-Kruczynski, M., Piot, B.A., Potemski, M., Grigorieva, I.V., Novoselov, K.S., Guinea, F., Fal’ko, V.I., Geim, A.K.: Cloning of Dirac fermions in graphene superlattices. Nature 497, 594 (2013)

    Google Scholar 

  49. Dean, C., Wang, L., Maher, P., Forsythe, C., Ghahari, F., Gao, Y., Katoch, M., Ishigami, P., Moon, P., Koshino, M., Taniguchi, T., Watanabe, K., Shepard, K.L., Hone, J., Kim, P.: Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598 (2013)

    Google Scholar 

  50. Czajka, K., Gorczyca, A., Maska, M.M., Mierzejewski, M.: Hofstadter butterfly for a finite correlated system. Phys. Rev. B 74, 125116 (2006)

    Google Scholar 

  51. Aidelsburger, M., Atala, M., Lohse, M., Barreiro, J., Paredes, B., Bloch, I.: Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)

    Google Scholar 

  52. Feng, L., Ayache, M., Huang, J., Xu, Y.-L., Lu, M.-H., Chen, Y.-F., Fainman, Y., Scherer, A.: Nonreciprocal light propagation in a silicon photonic circuit. Science 333, 729 (2011)

    Google Scholar 

  53. Szameit, A., Rechtsman, M.C., Bahat-Treidel, O., Segev, M.: PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806(R) (2011)

    Google Scholar 

  54. Lin, Z., Schindler, J., Ellis, F.M., Kottos, T.: Experimental observation of the dual behavior of PT-symmetric scattering. Phys. Rev. A 85, 050101 (2012)

    Google Scholar 

  55. Fagotti, M., Bonati, C., Logoteta, D., Marconcini, P., Macucci, M.: Armchair graphene nanoribbons: PT-symmetry breaking and exceptional points without dissipation. Phys. Rev. B 83, 241406(R) (2011)

    Google Scholar 

  56. Bittner, S., Dietz, B., Gunther, U., Harney, H.L., Miski-Oglu, M., Richter, A., Schaefer, F.: PT symmetry and spontaneous symmetry breaking in a microwave billiard. Phys. Rev. Lett. 108, 024101 (2012)

    Google Scholar 

  57. Liertzer, M., Ge, L., Cerjan, A., Stone, A.D., Tureci, H.E., Rotter, S.: Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012)

    Google Scholar 

  58. Schindler, J., Li, A., Zheng, M.C., Ellis, F.M., Kottos, T., Joseph, S., et al.: Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011)

    Google Scholar 

  59. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  60. Liu, C.J., Wee, A.T.S., Liu, W., Zhang, D.H., Huang, Z.M., Wang, S.Z., Yoon, S.F., Fan, W.J.: Interdiffusion in narrow InGaAsN/GaAs quantum wells. J. Appl. Phys. 101, 103111 (2007)

    Google Scholar 

  61. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flanner, B.P.: Numerical Recipes, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  62. Mobini, A., Solaimani, M.: A quantum rings based on multiple quantum wells for 1.2-2.8 THz detection. Physica E 101, 162–166 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solaimani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 194 kb)

Supplementary file2 (AVI 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solaimani, M. Spectra of PT-symmetric fractional Schrödinger equations with multiple quantum wells. J Comput Electron 19, 1416–1425 (2020). https://doi.org/10.1007/s10825-020-01576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01576-5

Keywords

Navigation