Skip to main content
Log in

Bacteria Mediated Synthesis of Iron Oxide Nanoparticles and Their Antibacterial, Antioxidant, Cytocompatibility Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles (IONPs) were synthesized from the Proteus vulgaris ATCC-29905 using the extracellular methodology. The UV–Vis spectrophotometry showed the λ-max (maximum absorbance) absorption peak at 310 nm. The FTIR analysis showed amides and other functional groups are associated with IONPs. The TGA results showed less protein loss (ΔY = 9.045%) at a protein degradation temperature of 71.73 °C. The FESEM images showed particles are spherical in shape. The EDX confirms the presence of iron. Zeta potential interface was found to be 79.5 mV that confirms its stability. The TEM results showed particles are spherical with a diameter between 19.23 nm ad 30.51 nm. These IONPs showed good antibacterial activity and also showed good activity against methicillin resistant staphylococcus aureus (MRSA). It showed good antioxidant activity. These IONPs exhibits good cytotoxic effect against U87 MG—glioblastoma cancer cells, showed IC50 value at 250 µg/ml compared with healthy L-132 cells. Scratch assay showed IONPs inhibit the cell migration of the HT-29 cancer cells. The nanoparticles synthesized from bacteria are safe and non-hazardous. It was expected that these IONPs could become a potential anticancer and antibacterial agent, and in the future it opens a new path for treating the cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V. S. Saji, H. C. Choe, and K. W. Young (2010). Int. J. Nano Biomater. 3, 119–139. https://doi.org/10.1504/IJNBM.2010.037801.

    Article  CAS  Google Scholar 

  2. Z. Liu, S. Tabakman, K. Welsher, and H. Dai (2009). Nano Res. 2, 85–120.

    Article  CAS  Google Scholar 

  3. Bleeker, E. Fonnet, Molenaar, J. Remco, Leenstra, and Sieger (2012). J. Neuro-Oncol. 108, 11–27.

    Article  CAS  Google Scholar 

  4. O. Gallego and Current Oncology (2015). Toronto. Ont. 22, (4), 273–281.

    Google Scholar 

  5. B. Patra, R. Gautam, E. Priyadarsini, P. Rajamani, M. Saravanan, and R. Meena (2020). J. Clust. Sci. 31, 133–145. https://doi.org/10.1007/s10876-019-01625-5.

    Article  CAS  Google Scholar 

  6. I. Virmani, C. Sasi, E. Priyadarshini, R. Kumar, S. K. Sharma, G. P. Singh, R. B. Pachwarya, R. Paulraj, H. Barabadi, M. Saravanan, and R. Meena (2020). J. Clust. Sci. 31, 867–876. https://doi.org/10.1007/s10876-019-01695-5.

    Article  CAS  Google Scholar 

  7. H. Barabadi, O. Hosseini, K. D. Kamali, F. J. Shoushtari, M. Rashedi, H. H. Aminjan, and M. Saravanan (2020). J. Clust. Sci. 31, 1–10. https://doi.org/10.1007/s10876-019-01639z.

    Article  CAS  Google Scholar 

  8. H. Barabadi, H. Vahidi, H. K. D. Kamali, M. Rashedi, O. Hoseini, A. R. Golnaraghi, and M. Saravanan (2020). J. Clust. Sci. 31, 311–321. https://doi.org/10.1007/s10876-019-01668-8.

    Article  CAS  Google Scholar 

  9. D. K. Kim (2001). J Magn Magn Mater. 225, 256–261.

    Article  CAS  Google Scholar 

  10. A. K. Gupta and M. Gupta (2005). Biomaterials 26, 3995–4021.

    Article  CAS  Google Scholar 

  11. J. Devkota, G. Kokkinis, T. Berris, M. Jamalieh, S. Cardoso, F. Cardoso, H. Srikanth, M. H. Phan, and I. Giouroudi (2015). RSC Adv. 5, (63), 51169–51175.

    Article  CAS  Google Scholar 

  12. B. A. Abbasi, J. Iqbal, S. A. Zahra, A. Shahbaz, S. Kanwal, A. Rabbani, and Tariq Mahmood (2019). Mater. Res. Express 6, (12), 50.

    Google Scholar 

  13. H. B. Shen, D. H. Long, L. Z. Zhu, X. Y. Li, Y. M. Dong, N. Q. Jia, H. Q. Zhou, X. Xin, and Y. Sun (2006). Biophys. Chem. 122, 1–4.

    Article  CAS  Google Scholar 

  14. J. Guoa, R. Wang, W. Tjiu, J. Pan, and T. Liu (2012). J. Hazard Mater. 225, 63–73.

    Article  CAS  Google Scholar 

  15. J.Iqbal, B.A. Abbasi, R. Ahmad, A. Shahbaz, S.A. Zahra, S. Kanwal, A. Munir, T. Mahmood (2020). J. Mol. Struct., 1199, art. no. 126979.

  16. M. Saravanan, M. Ashagrie, O. Ali, B. Ramachandran, Print publication date 02 8 2019. https://doi.org/10.1039/9781788012638-00481.

  17. A. L. Vega-Jiménez, A. R. Vázquez-Olmos, E. Acosta-Gío, M. A.Álvarez-Pérez, (2019) IntechOpen.

  18. B. A. Abbasi, J. Iqbal, R. Ahmad, L. Zia, S. Kanwal, T. Mahmood, C. Wang, and J. T. Chen (2020). Biomolecules 10, 38.

    Article  CAS  Google Scholar 

  19. S. Hameed, J. Iqbal, M. Ali, A. T. Khalil, B. A. Abbasi, M. Numan, and Z. K. Shinwar (2019). Mater. Res. Express 6, 10.

    Article  CAS  Google Scholar 

  20. R. Bhattacharya and P. Mukherjee (2008). Adv. Drug Deliv. Rev. 60, 1289–1306.

    Article  CAS  Google Scholar 

  21. K. Simkiss and K. M. Wilbur Biomineralization (Academic, New York, 1989).

    Google Scholar 

  22. M. Abdeen, S. Sabry, H. Ghozlan,1. Ahmed, A El-Gendy, E. Carpenter (2016).1-7 Article ID 9174891, 7 pages; http://dx.doi.org/10.1155/2016/9174891.

  23. P. Karnan, A. A. Anbarasu, N. Deepa, R. Usha, (2018). Int. J. Curr. Pharm. Res., 11–14.

  24. UV/VIS/IR Spectroscopy Analysis of Nanoparticles. San Diego: NanoComposix. (2012).

  25. D. M. Sherman and T. D. Waite (1985). Am. Mineral. 70, 1262–1269.

    CAS  Google Scholar 

  26. R. Irshad, K. Tahir, B. Li, A. Ahmad, A. Siddiqui, and S. Nazir (2017). J. Photochem. Photobiol. B 170, 241–246. https://doi.org/10.1016/jjphotobiol.2017.04.020.

    Article  PubMed  CAS  Google Scholar 

  27. S. Groiss, S. Raja, V. Thivaharan, and V. Ramesh (2017). J. Mol. Struct. 1128, 572–578. https://doi.org/10.1016/j.molstruc.2016.09.031.

    Article  CAS  Google Scholar 

  28. A. Rufus, N. Sreeju, and D. Philip (2016). RSC Adv. 6, 94206–94217. https://doi.org/10.1039/C6RA20240C.

    Article  CAS  Google Scholar 

  29. H. Muthukumar, N. I. Chandrasekaran, S. N. Mohammed, S. Pichiah, and M. Manickam (2017). J. Ind. Eng. Chem. 45, 121–130. https://doi.org/10.1016/j.jiec.2016.09.014.

    Article  CAS  Google Scholar 

  30. V. Vignesh, G. Sathiyanarayanan, G. Sathishkumar, K. Parthiban, K. SathishKumar, and R. Thirumurugan (2015). RSC Adv. 35, 27794–27804.

    Article  Google Scholar 

  31. K. Sirivibulkovit, S. Nouanthavong, and Y. Sameenoi (2018). Paper-based DPPH assay for antioxidant activity analysis. Anal. Sci. 34, 795–800.

    Article  CAS  Google Scholar 

  32. B. Gaihre, M. S. Khil, and H. Y. Kim (2011). J. Microencapsul. 28, (4), 286–293.

    Article  CAS  Google Scholar 

  33. P. C. Nagajyothi, M. Pandurangan, D. H. Kim, T. V. M. Sreekanth, and J. Shim (2017). J. Cluster. Sci. 28, 245–257.

    Article  CAS  Google Scholar 

  34. C. Schweiger, C. Pietzonka, J. Heverhagen, and T. Kissel (2011). Int. J. Pharm. 408, 130–137.

    Article  CAS  Google Scholar 

  35. A. Khatua, A. Prasad, E. Priyadarshini, A. K. Patel, A. Naik, M. Saravanan, H. Barabadi, L. Ghosh, B. Paul, R. Paulraj, and R. Meena (2019). J. Clust. Sci.. https://doi.org/10.1007/s10876-019-01742-1.

    Article  Google Scholar 

  36. H. Barabadi, M. A. Mahjoub, B. Tajani, A. Ahmadi, Y. Junejo, and M. Saravanan (2019). J. Clust. Sci. 30, 259–279. https://doi.org/10.1007/s10876-018-01491-7.

    Article  CAS  Google Scholar 

  37. S. Kuphal, R. Bauer, and A. K. Bosserhoff (2005). Cancer Metas. Rev. 24, 195–222.

    Article  CAS  Google Scholar 

  38. W. Li, X. Li, S. Liu, W. Yang, F. Pan, X. Y. Yang, B. Du, L. Qin, and Y. Pan (2019). Int. J. Nanomed. 12, 3509–3520.

    Article  Google Scholar 

  39. M. R. K. Ali, Y. Wu, D. Ghosh, B. H. Do, K. Chen, M. R. Dawson, N. Fang, T. A. Sulchek, and M. A. El-Sayed (2017). ACS Nano. 11, 3716–3726.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Kuala Lumpur Royal College of medicine for providing the necessary facilities and support in this study. I would also like to thank the school of chemical sciences university Sains Malaysia for their essential support to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahnaz Majeed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, S., Danish, M., Mohamad Ibrahim, M.N. et al. Bacteria Mediated Synthesis of Iron Oxide Nanoparticles and Their Antibacterial, Antioxidant, Cytocompatibility Properties. J Clust Sci 32, 1083–1094 (2021). https://doi.org/10.1007/s10876-020-01876-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01876-7

Keywords

Navigation