Skip to main content
Log in

The Role of Chelators in Electrodeposition of Cu-As Alloys from Copper Electrolyte

  • Electrometallurgical Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Copper electrorefining is a key part of copper metallurgical processes. The electrolyte is usually purified to prevent the accumulation of impurities and contamination of the cathode. Cyclone electrowinning is a widely applied purification method, but black copper mud that contains arsenic is produced after the process and endangers the environment. With the addition of effective chelators, controllable electroplating can be achieved. In order to investigate their role in electrodeposition, a variety of chelators were selected and applied in this study. LSV, XRD, and SEM were used to characterize Cu-As alloys produced from each test. The effects of chelators on the number and shifting of phase transition zones during the electrodeposition were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.K. Sharma, J.C. Tjell, J.J. Sloth, and P.E. Holm, Appl. Geochem. 41, 11 (2014).

    Article  Google Scholar 

  2. P. Parihar, Ecotoxicol. Environ. Saf. 112, 247 (2015).

    Article  Google Scholar 

  3. A.H. Smith and C.M. Steinmaus, Annu. Rev. Public Health 30, 107 (2009).

    Article  Google Scholar 

  4. A. Sarkar and B. Paul, Chemosphere 158, 37 (2016).

    Article  Google Scholar 

  5. X.B. Min, Y.P. Liao, L.Y. Chai, Z.H. Yang, S. Xiong, L. Liu, and Q.Z. Liu, Trans. Nonferrous Met. Soc. China 25, 1298 (2015).

    Article  Google Scholar 

  6. T.T. Chen and J.E. Dutrizac, JOM 42, 39 (1990).

    Article  Google Scholar 

  7. S.M. Prabhu, S. Kancharla, and C.M. Park, CrystEngComm 21, 2320 (2019).

    Article  Google Scholar 

  8. X.W. Wang, Q.Y. Chen, Z.L. Yin, M.Y. Wang, and F. Tang, Hydrometallurgy 108, 199 (2011).

    Article  Google Scholar 

  9. M. Yokoi, Copper Electrodeposition, 1st ed. (New York: Springer, 2014), pp. 3–25.

    Google Scholar 

  10. X. Wang, Q. Chen, Z. Yin, M. Wang, B. Xiao, and F. Zhang, Hydrometallurgy 105, 355 (2011).

    Article  Google Scholar 

  11. T. Nagai, Miner. Process. Extr. Metall. Rev. 17, 143 (1997).

    Article  Google Scholar 

  12. M.L. Free, Hydrometallurgy: Fundamentals and Applications, 1st ed. (Hoboken: Wiley, 2013), pp. 218–238.

    Book  Google Scholar 

  13. Y. Wang, Y. Xue, J. Su, S. Zheng, and W. Jin, Hydrometallurgy 179, 232 (2018).

    Article  Google Scholar 

  14. H.P. He, D.L. Wu, L.H. Zhao, C. Luo, C.M. Dai, and Y.L. Zhang, J. Hazard. Mater. 309, 116 (2016).

    Article  Google Scholar 

  15. K.S. Barros and D.C.R. Espinosa, Sep. Purif. Technol. 201, 244 (2018).

    Article  Google Scholar 

  16. Y. Song, T. Sun, L. Cang, S. Wu, and D. Zhou, Electrochim. Acta 295, 605 (2018).

    Article  Google Scholar 

  17. X. Huang, Y. Xu, C. Shan, X. Li, W. Zhang, and B. Pan, Chem. Eng. J. 299, 23 (2016).

    Article  Google Scholar 

  18. W. Guan, B.F. Zhang, and S.C. Tian, Appl. Catal. B 227, 252 (2018).

    Article  Google Scholar 

  19. T. Wang, Y. Cao, G. Qu, Q. Sun, T.J. Xia, and X.T. Guo, Environ. Sci. Technol. 52, 7884 (2018).

    Article  Google Scholar 

  20. H. Zeng, S. Liu, B. Chai, D. Cao, Y. Wang, and X. Zhao, Environ. Sci. Technol. 50, 6459 (2016).

    Article  Google Scholar 

  21. M.R.H. de Almeida, E.P. Barbano, M.G. Zacarin, M.M. de Brito, P.C. Tulio, and I.A. Carlos, Surf. Coat. Technol. 287, 103 (2016).

    Article  Google Scholar 

  22. Y. Cao, X.C. Qian, Y.X. Zhang, G.Z. Qu, T.J. Xia, X.T. Guo, H.Z. Jia, and T.C. Wang, Chem. Eng. J. 362, 487 (2019).

    Article  Google Scholar 

  23. J. Szynkarczuk, I. Drela, and J. Kubicki, Electrochim. Acta 34, 399 (1989).

    Article  Google Scholar 

  24. M.R.H. de Almeida, E.P. Barbano, M.F.D. Carvalho, I.A. Carlos, J.L.P. Siqueira, and L.L. Barbosa, Surf. Coat. Technol. 206, 95 (2011).

    Article  Google Scholar 

  25. K. Shimizu, R. Hutcheson, M.D. Engelmann, and I.F. Cheng, J. Electroanal. Chem. 603, 44 (2007).

    Article  Google Scholar 

  26. G.C.D. Witt, P.M. May, J. Webb, and G. Hefter, Biometals 9, 351 (1996).

    Article  Google Scholar 

  27. B. Nowack, Water Res. 37, 2533 (2003).

    Article  Google Scholar 

  28. O. Masala, E.J.L. Mcinnes, and P. O’Brien, Inorg. Chim. Acta 339, 366 (2002).

    Article  Google Scholar 

  29. S. Mehrizi, M.H. Sohi, and M. Saremi, Ionics 19, 911 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Natural Science Foundation of China (No. 51804351), National Key R&D Program of China (2018YFC1900305), the key project of the National Natural Science Foundation of China (51634010), and National Science Fund for Distinguished Young Scholars (51825403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhi Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, L., Xiong, C., Zeng, W. et al. The Role of Chelators in Electrodeposition of Cu-As Alloys from Copper Electrolyte. JOM 72, 3876–3886 (2020). https://doi.org/10.1007/s11837-020-04334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04334-x

Navigation