Skip to main content
Log in

Enhancing Thermo-Economic Performance of TiO2-Water Nanofluids: An Experimental Investigation

  • Nanomechanics of Low-dimensional Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, the thermal and cost performance of TiO2-water nanofluids was investigated. Stable nanofluids were formulated by dispersing TiO2 nanoparticles in water as the base fluid. Thermal conductivity and viscosity of nanofluids were measured at 0.1–1 wt.% over the temperature range 25–65°C. The effects of constituent material properties were also analyzed. Enhancements in thermal conductivity and viscosity of the nanofluid were obtained. Thermal conductivity increased with concentration and temperature rise, whereas the viscosity increased with wt. fraction and decreased with temperature elevation. Thermal conductivity and viscosity were also influenced by material properties. The resultant data were compared with the published models and a wide deviation was observed. New models for thermal conductivity and viscosity of nanofluids with very high accuracy are proposed. Thermal performance based on the measured thermo-physical properties was analyzed. It was observed that nanofluids are suitable for heat transfer. Finally, a cost performance analysis was carried out to inspect the economic feasibility of nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C :

Cost or price ($/g)

f :

Frequency (Hz)

k :

Thermal conductivity (W/m–K)

K B :

Boltzmann constant (1.3807 × 10−23 J/K)

M :

Molar mass (kg/mol)

n :

Number of experimental runs

N A :

Avogadro number (6.023 × 1023)

P i :

Individual measurement of a parameter

\( \bar{P} \) :

Average of all measurements of a parameter

PPI:

Price-performance index

t :

Time (s)

U p :

Overall uncertainty

U v :

Uncertainty in measurement of individual parameter

V :

Molar volume (m3/mol)

u :

Velocity (m/s)

ρ :

Density (kg/m3)

\( \Phi \) :

wt. fraction (%)

λ :

Wavelength (m)

µ :

Viscosity (cP)

ω :

Weight (g)

bf:

Base fluids

np:

Nanoparticles

nf:

Nanofluids

References

  1. S.E.B. Maïga, C.T. Nguyen, N. Galanis, G. Roy, T. Maré, and M. Coqueux, Int. J. Numer. Methods Heat Fluid Flow 16, 275 (2006).

    Google Scholar 

  2. S. U. Choi, and J. A. Eastman, Argonne National Lab., IL (United States), No. ANL/MSD/CP-84938, CONF-951135-29 (1995).

  3. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001).

    Google Scholar 

  4. C.H. Li and G.P. Peterson, J. Appl. Phys. 101, 044312 (2007).

    Google Scholar 

  5. A. Turgut, I. Tavman, M. Chirtoc, H.P. Schuchmann, C. Sauter, and S. Tavman, Int. J. Thermophys. 30, 1213 (2009).

    Google Scholar 

  6. W.H. Azmi, K.V. Sharma, P.K. Sarma, R. Mamat, and G. Najafi, Int. Comm. Heat Mass Transf. 59, 30 (2014).

    Google Scholar 

  7. I. Mahbubul, R. Saidur, and M. Amalina, Int. J. Heat Mass Transf. 55, 874 (2012).

    Google Scholar 

  8. B.C. Pak and Y.I. Cho, Experim. Heat Transf. 11, 151 (1998).

    Google Scholar 

  9. W. Duangthongsuk and S. Wongwises, Experim. Therm. Fluid Sci. 33, 706 (2009).

    Google Scholar 

  10. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, Int. J. Heat Mass Transf. 50, 2272 (2007).

    Google Scholar 

  11. R. Prasher, D. Song, J. Wang, and P. Phelan, Appl. Phys. Lett. 89, 133108 (2006).

    Google Scholar 

  12. Y. Zhai, L. Li, J. Wang, and Z. Li, Powd. Technol. 343, 215 (2019).

    Google Scholar 

  13. A. Asadi and F. Pourfattah, Powd. Technol. 343, 296 (2019).

    Google Scholar 

  14. J. Garg, B. Poudel, M. Chiesa, J.B. Gordon, J.J. Ma, J.B. Wang, Z.F. Ren, Y.T. Kang, H. Ohtani, J. Nanda, G.H. McKinley, and G. Chen, J. Appl. Phys. 103, 074301 (2008).

    Google Scholar 

  15. D. Cabaleiro, L. Colla, S. Barison, L. Lugo, L. Fedele, and S. Bobbo, Nanosci. Res. Lett. 12, 53 (2017).

    Google Scholar 

  16. F. Yu, Y. Chen, X. Liang, J. Xu, C. Lee, Q. Liang, P. Tao, and T. Deng, Progr. Natur. Sci.: Mater. Int. 27, 531 (2017).

    Google Scholar 

  17. N. Sezer, M.A. Atieh, and M. Koç, Powd. Technol. 344, 404 (2019).

    Google Scholar 

  18. X. Wang, Y. He, G. Cheng, L. Shi, X. Liu, and J. Zhu, Energy Conv. Manag. 130, 176 (2016).

    Google Scholar 

  19. F. Mashali, E. Languri, G. Mirshekari, J. Davidson, and D. Kerns, Int. Comm. Heat Mass Transf. 101, 82 (2019).

    Google Scholar 

  20. R.R. Nathani and L. Gahane, Int. J. Recent Innov. Res. 2, 46 (2017).

    Google Scholar 

  21. N. Ali, J.A. Teixeira, and A. Addali, J. Nanomater. (2018). https://doi.org/10.1155/2018/6978130.

    Article  Google Scholar 

  22. A. Ghadimi, R. Saidur, and H.S.C. Metselaar, Int. J. Heat Mass Transf. 54, 4051 (2011).

    Google Scholar 

  23. E. W. Lemmon, M. L. Huber, and M. O. McLinden, Reference Fluid Thermodynamic and Transport Properties (REFPROP), Ver. 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22 (2010).

  24. P.B. Maheshwary, C.C. Handa, and K.R. Nemade, Appl. Therm. Eng. 119, 79 (2017).

    Google Scholar 

  25. I. Nurdin and Satriananda, AIP Conf. Proceed. 1823, 020011 (2017).

    Google Scholar 

  26. P. Vizureanu and M. Agop, Mater. Trans. 48, 3021 (2007).

    Google Scholar 

  27. R. Agarwal, K. Verma, N.K. Agrawal, R.K. Duchaniya, and R. Singh, Appl. Therm. Eng. 102, 1024 (2016).

    Google Scholar 

  28. J. Shah, M. Ranjan, V. Davariya, S.K. Gupta, and Y. Sonvane, Appl. Nanosci. 7, 803 (2017).

    Google Scholar 

  29. K. Hamid, W. Azmi, R. Mamat, and N.A. Usri, Ind. J. Pure Appl. Phys. 54, 651 (2016).

    Google Scholar 

  30. M. Chandrasekar, S. Suresh, and A.C. Bose, Experim. Therm. Fluid Sci. 34, 210 (2010).

    Google Scholar 

  31. S. Mukherjee, P.C. Mishra, S.K.S. Parashar, and P. Chaudhuri, Heat Mass Transf. 52, 2575 (2016).

    Google Scholar 

  32. N.A.C. Sidik, M.N.A.W.M. Yazid, and S. Samion, Int. J. Heat Mass Transf. 111, 782 (2017).

    Google Scholar 

  33. L. Godson, B. Raja, D.M. Lal, and S. Wongwises, Exper. Heat Transf. 23, 317 (2010).

    Google Scholar 

  34. S. Özerinç, S. Kakaç, and A.G. Yazıcıoğlu, Microfluid. Nanofluid. 8, 145 (2010).

    Google Scholar 

  35. H. Xie, W. Yu, Y. Li, and L. Chen, Nanoscale Res. Lett. 6, 124 (2011).

    Google Scholar 

  36. M.H. Esfe, A.A.A. Arani, R.S. Badi, and M. Rejvani, J. Therm. Anal. Calorim. 131, 2381 (2018).

    Google Scholar 

  37. V.Y. Rudyak, Adv. Nanopart. 2, 266 (2013).

    Google Scholar 

  38. P.C. Mishra, S. Mukherjee, S.K. Nayak, and A. Panda, Int. Nano Lett. 4, 109 (2014).

    Google Scholar 

  39. R.L. Hamilton and O.K. Crosser, Indust. Eng. Chem. Fund. 1, 187 (1962).

    Google Scholar 

  40. E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, S. Sprunt, L.M. Lopatina, and J.V. Selinger, Physic. Rev. E. 76, 061203 (2007).

    Google Scholar 

  41. A. Einstein, Ann. Phys. 324, 289 (1906).

    Google Scholar 

  42. X. Wang, X. Xu, and S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474 (1999).

    Google Scholar 

  43. G.K. Batchelor, J. Fluid Mechan. 83, 97 (1977).

    Google Scholar 

  44. C.A. Charitidis, P. Georgiou, M.A. Koklioti, A.F. Trompeta, and V. Markakis, Manuf. Rev. 1, 11 (2014).

    Google Scholar 

  45. S. Wciślik, Chem. Pap. 71, 2395 (2017).

    Google Scholar 

  46. M. Rocha, E. Cabral, G. Sabundjian, H. Yoriyaz, A. Lima, A. Junior, A. Prado, T. Madi Filho, L. Otubo, in International Nuclear Atlantic ConferenceINAC. Recife, PE, Brazil, November 24–29, 2013.

  47. S. Mukherjee, P.C. Mishra, and P. Chaudhuri, J. Mol. Liq. 299, 112200 (2019).

    Google Scholar 

  48. A. Alirezaie, M.H. Hajmohammad, A. Alipour, and M. Salari, Energy 157, 979 (2018).

    Google Scholar 

Download references

Acknowledgement

The authors cordially acknowledge the financial support provided by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy, Govt. of India (Sanction No. 39/14/04/2017-BRNS/34301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purna Chandra Mishra.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Mishra, P.C. & Chaudhuri, P. Enhancing Thermo-Economic Performance of TiO2-Water Nanofluids: An Experimental Investigation. JOM 72, 3958–3967 (2020). https://doi.org/10.1007/s11837-020-04336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04336-9

Navigation