Skip to main content
Log in

Reference-Frame-Independent Quantum Key Distribution in Uplink and Downlink Free-Space Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The reference-frame-independent quantum key distribution (RFI-QKD) allows the authorized users to share secrete keys without active alignment of the reference frames, which is beneficial for the implementation over free-space channel. However, the performance of free-space RFI-QKD could notably degrade due to the influence of atmospheric conditions. In this paper, we investigate the transmission attenuation of free-space channel in uplink and downlink scenario, respectively. Furthermore, we also simulate the relationships between the diffraction-caused attenuation and the apertures of sending and receiving optics. Then, the key generation rate of RFI-QKD and BB84 protocol are compared in different links with reference frame deviations. Simulation results show that the transmission attenuation due to diffraction can be reduced by choosing appropriate optical apertures, and better performance of free-space RFI-QKD can be achieved in downlink configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE international conference on computers, systems, and signal processing, Bangalore, India, 10-19 December 1984, pp 175-179 (1984)

  2. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    ADS  Google Scholar 

  3. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys Rev Lett. 94(23), 230504 (2005)

    ADS  Google Scholar 

  4. Zhang, Q., Xu, F., Chen, Y.A., et al.: Large scale quantum key distribution: challenges and solutions. Opt. Express. 26(18), 24260–24273 (2018)

    ADS  Google Scholar 

  5. Fan-Yuan, G.J., Wang, C., Wang, S., et al.: Afterpulse analysis for quantum key distribution. Phys. Rev. Appl. 10(6), 064032 (2018)

    ADS  Google Scholar 

  6. Yin, Z.Q., Wang, S., Chen, W., et al.: Improved security bound for the round-robin-differential-phase-shift quantum key distribution. Nat. Commun. 9(1), 457 (2018)

    ADS  Google Scholar 

  7. Lucamarini, M., Yuan, Z.L., Dynes, J.F., et al.: Overcoming the rate-distance barrier of quantum key distribution without using quantum repeaters. Nature 557(7705), 400–403 (2018)

    ADS  Google Scholar 

  8. Lu, F.Y., Yin, Z.Q., Cui, C.H., et al.: Improving the performance of twin-field quantum key distribution. Phys. Rev. A. 100(2), 022306 (2019)

    ADS  Google Scholar 

  9. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Google Scholar 

  10. Acin, A., Brunner, N., Gisin, N., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)

    ADS  Google Scholar 

  11. Mower, J., Zhang, Z., Desjardins, P., et al.: High-dimensional quantum key distribution using dispersive optics. Phys. Rev. A. 87(6), 062322 (2013)

    ADS  Google Scholar 

  12. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature. 509(7501), 475 (2014)

    ADS  Google Scholar 

  13. Fan-Yuan, G.J., Teng, J., Wang, S.: Optimizing singlephoton avalanche photodiodes for dynamic quantum key distribution networks. Phys. Rev. Appl. 13(5), 054027 (2020)

    ADS  Google Scholar 

  14. Schmitt-Manderbach, T., Weier, H., Fuerst, M., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)

    ADS  Google Scholar 

  15. Yin, H.L., Chen, T.Y., Yu, Z.W., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    ADS  Google Scholar 

  16. Minder, M., Pittaluga, M., Roberts, G.L., et al.: Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photon. 13 (5), 334 (2019)

    ADS  Google Scholar 

  17. Liao, S.K., Cai, W.Q., Handsteiner, J., et al.: Satellite-relayed intercontinental quantum network. Phys. Rev Lett. 120(3), 030501 (2018)

    ADS  Google Scholar 

  18. Qiu, J.: Quantum communications leap out of the lab. Nature. 508 (7497), 441–442 (2014)

    ADS  Google Scholar 

  19. Simon, C.: Towards a global quantum network. Nat. Photon. 11 (11), 678–680 (2017)

    ADS  Google Scholar 

  20. Kurtsiefer, C., Zarda, P., Halder, M., et al.: Quantum cryptography: a step towards global key distribution. Nature. 419(6906), 450 (2002)

    ADS  Google Scholar 

  21. Diamanti, E., Lo, H.K., Qi, B., et al.: Practical challenges in quantum key distribution. Npj. Quantum Inform. 2, 16025 (2016)

    Google Scholar 

  22. Liao, S.K., Cai, W.Q., Liu, W.Y., et al.: Satellite-to-ground quantum key distribution. Nature. 549(7670), 43–47 (2017)

    ADS  Google Scholar 

  23. Pirandola, S., Andersen, U.L., Banchi, L., et al.: Advances in quantum cryptography. arXiv:1906.01645 (2019)

  24. Chen, J.P., Zhang, C., Liu, Y., et al.: Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509km. Phys. Rev. Lett. 124(7), 070501 (2020)

    ADS  Google Scholar 

  25. Yin, J., Cao, Y., Li, Y.H., et al.: Satellite-based entanglement distribution over 1200 kilometers. Science. 356(6343), 1140–1144 (2017)

    Google Scholar 

  26. Yang, A.L., Gao, J., Ji, L., et al.: Towards quantum communications in free-space seawater. Opt. Express. 25(17), 19795–19806 (2017)

    ADS  Google Scholar 

  27. Bouchard, F., Alicia, S., Felix, H., et al.: Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express. 26(17), 22563 (2018)

    ADS  Google Scholar 

  28. Wang, J.Y., Yang, B., Liao, S.K., et al.: Direct and full-scale experimental verifications towards ground satellite quantum key distribution. Nat. Photon. 7(5), 387–393 (2013)

    ADS  Google Scholar 

  29. Nauerth, S., Moll, F., Rau, M., et al.: Air-to-ground quantum communication. Nat. Photon. 7(5), 382–386 (2013)

    ADS  Google Scholar 

  30. Bourgoin, J.P., Higgins, B.L., Gigov, N., et al.: Free-space quantum key distribution to a moving receiver. Opt. Express. 23(26), 33437 (2015)

    ADS  Google Scholar 

  31. Pugh, C.J., Kaiser, S., Bourgoin, J.P., et al.: Airborne demonstration of a quantum key distribution receiver payload. Quantum Sci. Technol. 2(2), 024009 (2017)

    ADS  Google Scholar 

  32. Hill, A.D., Chapman, J., Herndon, K., et al.: Drone-based quantum key distribution. Urbana. 51, 61801–63003 (2017)

    Google Scholar 

  33. Laing, A., Scarani, V., Rarity, J.G., et al.: Reference frame independent quantum key distribution. Phys. Rev. A. 82(1), 012304 (2010)

    ADS  Google Scholar 

  34. Wang, C., Song, X.T., Yin, Z.Q., et al.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115(16), 160502 (2015)

    ADS  Google Scholar 

  35. Wang, F., Zhang, P., Wang, X., et al.: Valid conditions of the reference-frame-independent quantum key distribution. Phys. Rev. A. 94 (6), 062330 (2016)

    ADS  Google Scholar 

  36. Zhang, C.M., Zhu, J.R., Wang, Q.: Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution. Phys. Rev. A. 95(3), 032309 (2017)

    ADS  Google Scholar 

  37. Zhang, C.M., Wang, W.B., Li, H.W., et al.: Weak randomness impacts the security of reference-frame-independent quantum key distribution. Opt. Lett. 44(5), 1226–1229 (2019)

    ADS  Google Scholar 

  38. Wang, C., Sun, S.H., Ma, X.C., et al.: Reference-frame-independent quantum key distribution with source flaws. Phys. Rev. A. 92(4), 042319 (2015)

    ADS  Google Scholar 

  39. Tanumoy, P., Byung, K.P., Cho, Y.W., et al.: Robustness of reference-frame-independent quantum key distribution against the relative motion of the reference frames. Phys. Lett. A. 381(31), 2497–2501 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Wang, X.Y., Zhao, N., Chen, N., et al.: Effects of atmospheric turbulence on the single-photon receiving efficiency and the performance of quantum channel with the modified approximate elliptic-beam model assumption. Quantum Inf. Process. 17(1), 14 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Aspelmeyer, M., Jennewein, T., Pfennigbauer, M., et al.: Long-distance quantum communication with entangled photons using satellites. IEEE J. Sel. Topics Quantum Electron. 9(6), 1541–1551 (2003)

    ADS  Google Scholar 

  42. Sharma, V., Banerjee, S.: Analysis of atmospheric effects on satellite-based quantum communication: a comparative study. Quantum Inf. Process. 18 (3), 67 (2019)

    ADS  MATH  Google Scholar 

  43. Tomaello, A., Bonato, C., Deppo, V.D., et al.: Link budget and background noise for satellite quantum key distribution. Adv. Space. Res. 47(5), 802–810 (2011)

    ADS  Google Scholar 

  44. Andrews, L.C., Philips, R.L., Yu, P.T.: Optical fade statistics for a satellitecommunication system. Appl scintillation Opt. 34(33), 7742–5164 (1995)

    Google Scholar 

  45. Fan-Yuan, G.J., Wang, S., Yin, Z.Q., et al.: Modeling alignment error in quantum key distribution based on a weak coherent source. Phys. Rev. Appl. 12(6), 064044 (2019)

    ADS  Google Scholar 

  46. Wang, X.B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A. 72(1), 012322 (2005)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C.M. Zhang from the Nanjing University of Posts and Telecommunications for helpful discussion. We gratefully acknowledge the financial support from the National Natural Science Foundation of China through Grants Nos.61971436, 61803382; the Natural Science Basic Research Plan in Shaanxi Province through Grant No. 2018JQ6020; the China Postdoctoral Science Foundation Funded Project through Grant No. 2018M643869.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Suppose that two single-photon detectors are used at the receiver’s side, the total gain and QBER of λ intensity states in ζ basis can be given as

$$ \begin{array}{@{}rcl@{}} {Q}_{\zeta_{A}\zeta_{B}}^{\lambda}&=&\sum\limits_{n=0}^{\infty} e^{-\lambda}\frac{{\lambda}^{n}}{n!}{Y}_{\zeta_{A}\zeta_{B}}^{n}, \end{array} $$
(17)
$$ \begin{array}{@{}rcl@{}} {Q}_{\zeta_{A}\zeta_{B}}^{\lambda}{E}_{\zeta_{A}\zeta_{B}}^{\lambda}&=&\sum\limits_{n=0}^{\infty} e^{-\lambda}\frac{{\lambda}^{n}}{n!}{Y}_{\zeta_{A}\zeta_{B}}^{n}{e}_{\zeta_{A}\zeta_{B}}^{n}, \end{array} $$
(18)

according to the binomial principle, the successful probability of detecting Alice’s state in Bob’s basis of n-photon pulse is expressed as

$$ \begin{array}{@{}rcl@{}} {P}_{\zeta_{A}\zeta_{B}}^{n} = \sum\limits_{n=0}^{\infty} e^{-\lambda}\frac{{\lambda}^{n}}{n!}\sum\limits_{m=0}^{n}{{C}_{m}^{n}}\eta^{m}(1-\eta)^{n-m}(|\langle \zeta_{A}|\zeta_{B}\rangle|^{2})^{m}P(m), \end{array} $$
(19)

P(m) means the probability of valid detection events. When m = 0, \(P(m)=P_{d}-{{P}_{d}^{2}}\approx P_{d}\), when m > 0, P(m) = 1 − Pd. Pd is the dark counts of a single-photon detector. The above calculations are also applied to the decoy state (λ = ν) and vacuum state (λ = 0). It can be acquired intuitively that the gain and error rate of vacuum states are Q0 = 2Pd(1 − Pd) and \(Q^{0}E^{0}=\frac {1}{2}Q^{0}\).

For non-vacuum states, the total gain of intensity λ is half of the total probability of all kinds of detection events and the quantum bit error is half of the wrong detection events probability. For example,

$$ \begin{array}{@{}rcl@{}} {Q}_{Z_{A}Z_{B}}^{\mu} &=& \frac{1}{2}\left( {P}_{{Z_{A}^{0}}{Z}_{B}^{0}}^{\mu}+{P}_{{Z}_{A}^{0}{Z}_{B}^{1}}^{\mu}+{P}_{{{Z}_{A}^{1}}{{Z}_{B}^{0}}}^{\mu}+P_{{Z}_{A}^{1}{Z}_{B}^{1}}^{\mu}\right) \end{array} $$
(20)
$$ \begin{array}{@{}rcl@{}} {Q}_{Z_{A}Z_{B}}^{\mu}{E}_{Z_{A}Z_{B}}^{\mu} &=& \frac{1}{2}\left( {P}_{{Z}_{A}^{0}{Z}_{B}^{1}}^{\mu}+{P}_{{Z}_{A}^{1}{Z}_{B}^{0}}^{\mu}\right) \end{array} $$
(21)

In order to get the final key rate we also need to evaluate the upperbound of single-photon error rate and the lowerbound of its gain, which are given as

$$ \begin{array}{@{}rcl@{}} {Y}_{Z_{A}Z_{B}}^{1,L} &=& \frac{\mu}{\mu\nu-\nu^{2}}\left( e^{\nu}{Q}_{Z_{A}Z_{B}}^{\nu}-e^{\mu}\frac{\nu^{2}}{\mu^{2}}{Q}_{Z_{A}Z_{B}}^{\mu}-\frac{\mu^{2}-\nu^{2}}{\mu^{2}}Q^{0}\right) \end{array} $$
(22)
$$ \begin{array}{@{}rcl@{}} {e}_{Z_{A}Z_{B}}^{1,U} &=& \min\left\{\frac{1}{2},\frac{e^{\nu}Q_{Z_{A}Z_{B}}^{\nu}{E}_{Z_{A}Z_{B}}^{\nu}-Q^{0}E^{0}}{\nu {Y}_{Z_{A}Z_{B}}^{1,L}}\right\} \end{array} $$
(23)

The formula also apply to the other basis combination to calculate (16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Shi, L., Wei, J. et al. Reference-Frame-Independent Quantum Key Distribution in Uplink and Downlink Free-Space Channel. Int J Theor Phys 59, 3299–3309 (2020). https://doi.org/10.1007/s10773-020-04587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04587-x

Keywords

Navigation