Skip to main content
Log in

Riemannian manifolds dual to static spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We establish a one-to-one correspondence between static spacetimes and Riemannian manifolds that maps causal geodesics to geodesics, as suggested by L. C. Epstein. We explore constant curvature spacetimes—such as the de Sitter and the anti-de Sitter spacetimes—and find that they map to constant curvature Riemannian manifolds, namely the Euclidean space, the sphere and the hyperbolic space. By imposing the conditions required to map to the sphere, we obtain the metrics for which there is radial oscillatory motion with a period independent of the amplitude. We then consider the case of a perfect fluid and an Einstein cluster and determine the conditions required to find this type of motion. Finally, we give examples of surfaces corresponding to certain types of motion for metrics that do not exhibit constant curvature, such as the Schwarzschild, Schwarzschild de Sitter and Schwarzschild anti-de Sitter solutions, and even for a simplified model of a wormhole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This idea is similar to the Eisenhart lift [9], and may be considered as an application of the Kaluza–Klein trick without the electromagnetic field; it has been used before in the slightly more general context of stationary spacetimes and Randers metrics in [4,5,6,7,8].

References

  1. Abramowicz, M., Andersson, N., Bruni, M., Ghosh, P., Sonego, S.: Gravitational waves from ultracompact stars: the optical geometry view of trapped modes. Class. Quantum Gravity 14, L189–L194 (1997)

    Article  ADS  Google Scholar 

  2. Abramowicz, M., Carter, B., Lasota, J.: Optical reference geometry for stationary and static dynamics. Gen. Relativ. Gravit. 20, 1173–1183 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  3. Abramowicz, M., Lasota, J.: On traveling round without feeling it and uncurving curves. Am. J. Phys. 54, 936–939 (1986)

    Article  ADS  Google Scholar 

  4. Caponio, E., Germinario, A., Sánchez, M.: Convex regions of stationary spacetimes and Randers spaces. Applications to lensing and asymptotic flatness. J. Geom. Anal. 26, 791–836 (2016)

    Article  MathSciNet  Google Scholar 

  5. Caponio, E., Javaloyes, M., Masiello, A.: Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 857–876 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. Caponio, E., Javaloyes, M., Masiello, A.: Finsler geodesics in the presence of a convex function and their applications. J. Phys. A 43, 135207 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. Caponio, E., Javaloyes, M., Masiello, A.: On the energy functional on Finsler manifolds and applications to stationary spacetimes. Math. Ann. 351, 365–392 (2011)

    Article  MathSciNet  Google Scholar 

  8. Caponio, E., Javaloyes, M., Sánchez, M.: Wind Finslerian structures: from Zermelo’s navigation to the causality of spacetimes. arXiv:1407.5494

  9. Cariglia, M., Alves, F.: The Eisenhart lift: a didactical introduction of modern geometrical concepts from Hamiltonian dynamics. Eur. J. Phys. 36, 025018 (2015)

    Article  Google Scholar 

  10. Cunha, P., Berti, E., Herdeiro, C.: Light-ring stability for ultracompact objects. Phys. Rev. Lett. 119, 251102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. di Sessa, A.: An elementary formalism for general relativity. Am. J. Phys. 49, 401–411 (1981)

    Article  ADS  Google Scholar 

  12. Einstein, A.: On a stationary system with spherical symmetry consisting of many gravitating masses. Ann. Math. 40, 922–936 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  13. Epstein, L.C.: Relativity Visualized. Taylor & Francis, London (1984)

    Google Scholar 

  14. Hartle, J.: Gravity: An Introduction to Einstein’s General Relativity. Benjamin Cummings, Menlo Park (2003)

    Google Scholar 

  15. Hod, S.: Fastest way to circle a black hole. Phys. Rev. D 84, 104024 (2011)

    Article  ADS  Google Scholar 

  16. Hopf, H.: Zum Clifford–Kleinschen Raumproblem. Math. Ann. 95, 313–339 (1926)

    Article  MathSciNet  Google Scholar 

  17. Jonsson, R.: Embedding spacetime via a geodesically equivalent metric of Euclidean signature. Gen. Relativ. Gravit. 33, 1207–1235 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. Jonsson, R.: Visualizing curved spacetime. Am. J. Phys. 73, 248–260 (2005)

    Article  ADS  Google Scholar 

  19. Karlovini, M., Rosquist, K., Samuelsson, L.: Constructing stellar objects with multiple necks. Class. Quantum Gravity 18, 817–832 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  20. Killing, W.: Ueber die Clifford–Kleinschen Raumformen. Math. Ann. 39, 257–278 (1891)

    Article  MathSciNet  Google Scholar 

  21. Kleppner, D., Kolenkow, R.: An Introduction to Mechanics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  22. Lemos, J., Lobo, F., Oliveira, S.: Morris–Thorne wormholes with a cosmological constant. Phys. Rev. D 68, 064004 (2003)

    Article  ADS  Google Scholar 

  23. Marolf, D.: Space-time embedding diagrams for black holes. Gen. Relativ. Gravit. 31, 919–944 (1999)

    Article  ADS  Google Scholar 

  24. Parker, E.: A relativistic gravity train. Gen. Relativ. Gravit. 49, 106 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Perlick, V.: Bertrand spacetimes. Class. Quantum Gravity 9, 1009–1021 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  26. Perlick, V.: Ray Optics, Fermat’s Principle, and Applications to General Relativity, Lecture Notes in Physics Monographs. Springer, Berlin (2000)

    MATH  Google Scholar 

  27. Rowland, D.: Geodesics without differential equations: general relativistic calculations for introductory modern physics classes. Eur. J. Phys. 27, 57–70 (2005)

    Article  Google Scholar 

  28. Schutz, B.: A First Course in General Relativity. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  29. Shapiro, I.: Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  30. Sonego, S., Abramowicz, M.: Maxwell equations and the optical geometry. J. Math. Phys. 39, 3158–3166 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  31. Sonego, S., Almergren, J., Abramowicz, M.: Optical geometry for gravitational collapse and Hawking radiation. Phys. Rev. D 62, 064010 (2000)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

CF gratefully acknowledges the Calouste Gulbenkian Foundation for the scholarship program Novos Talentos em Matemática. JN was partially supported by FCT/Portugal through Projects UIDB/MAT/04459/2020 and UIDP/MAT/04459/2020 and Grant (GPSEinstein) PTDC/MAT-ANA/1275/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Natário.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, C., Natário, J. Riemannian manifolds dual to static spacetimes. Gen Relativ Gravit 52, 84 (2020). https://doi.org/10.1007/s10714-020-02736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02736-5

Keywords

Navigation