Skip to main content

Advertisement

Log in

Density Functional Theory Study on the Hydrogen Evolution Reaction in the S-rich SnS2 Nanosheets

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this work, the effect of S-rich condition on the catalytic activity of the hydrogen evolution reaction in monolayer SnS2 edges was investigated using density functional theory. The results showed that the catalytic active sites for hydrogen evolution reaction (HER) in stoichiometry SnS2 monolayer locate at the (100) edge site, whereas the basal plane and (010) edge are inert for HER. The S-rich (100) and (010) edges are all catalytic active for HER with a large range of hydrogen coverage. Projected density of state analysis revealed that the mechanism for the improvement of catalytic activity is due to formation of density of states near the Fermi energy level by the S2 and S3 terminations. This work provides a new design methodology to improve the catalytic activity of catalysts based on transition metal dichalcogenides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Dunn, Hydrogen futures: Toward a sustainable energy system. International Journal of Hydrogen Energy 27(3), 235–264 (2002)

    CAS  Google Scholar 

  2. B.H.R. Suryanto, S. Chen, J.J. Duan, C. Zhao, Hydrothermally driven transformation of oxygen functional groups at multiwall carbon nanotubes for improved electrocatalytic applications. ACS Applied Materials & Interfaces 8(51), 35513–35522 (2016)

    CAS  Google Scholar 

  3. M. Caban-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nature Materials 14(12), 1245–1251 (2015)

    CAS  Google Scholar 

  4. H.H. Wu, H. Huang, J. Zhong, S. Yu, Q.B. Zhang, X.C. Zeng, Monolayer triphosphates MP3 ( M = Sn, Ge) with excellent basal catalytic activity for hydrogen evolution reaction. Nanoscale 11(25), 12210–12219 (2019)

    CAS  Google Scholar 

  5. J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809), 220–222 (2007)

    CAS  Google Scholar 

  6. E. Skúlason, V. Tripkovic, M.E. Björketun, S. Gudmundsdóttir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jónsson, J.K. Nørskov, Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. Journal of Physical Chemistry C 114(42), 18182–18197 (2010)

    Google Scholar 

  7. J. Tymoczko, F. Calle-Vallejo, W. Schuhmann, A.S. Bandarenka, Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster. Nature Communications 7(1), 10990–10990 (2016)

    CAS  Google Scholar 

  8. S.H. Mir, S. Chakraborty, P.C. Jha, J. Wärnå, H. Soni, P.K. Jha, R. Ahuja, Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction. Applied Physics Letters 109(5), 053903 (2016)

    Google Scholar 

  9. H.I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J.R. Long, C.J. Chang, A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069), 698–702 (2012)

    CAS  Google Scholar 

  10. J. Xie, S. Li, X. Zhang, J. Zhang, R. Wang, H. Zhang, B.C. Pan, Y. Xie, Atomically-thin molybdenum nitride nanosheets exposing active surface sites for efficient hydrogen evolution. Chemical Science 5(12), 4615–4620 (2014)

    CAS  Google Scholar 

  11. J. Kibsgaard, T.F. Jaramillo, Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angewandte Chemie, International Edition 53(52), 14433–14437 (2014)

    CAS  Google Scholar 

  12. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry 5(4), 263–275 (2013)

    Google Scholar 

  13. C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang, X. Zhang, J.Z. Chen, W. Zhao, S.K. Han, G.H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chemical Reviews 117(9), 6225–6331 (2017)

    CAS  Google Scholar 

  14. L. Jiang, B. Myer, K. Tellefsen, S. Pau, A planar microfabricated electrolyzer for hydrogen and oxygen generation. Journal of Power Sources 188(1), 256–260 (2009)

    CAS  Google Scholar 

  15. J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials 25(40), 5807–5813 (2013)

    CAS  Google Scholar 

  16. T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834), 100–102 (2007)

    CAS  Google Scholar 

  17. C. Tsai, F. Abild-Pedersen, J.K. Norskov, Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Letters 14(3), 1381–1387 (2014)

    CAS  Google Scholar 

  18. C. Tsai, K. Chan, F. Abild-Pedersen, J.K. Norskov, Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Physical Chemistry Chemical Physics 16(26), 13156–13164 (2014)

    CAS  Google Scholar 

  19. J. Kibsgaard, Z.B. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Materials 11(11), 963–969 (2012)

    CAS  Google Scholar 

  20. D.Y. Chung, S.K. Park, Y.H. Chung, S.H. Yu, D.H. Lim, N. Jung, H.C. Ham, H.Y. Park, Y. Piao, S.J. Yoo, Y.E. Sung, Edge-exposed MoS2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale 6(4), 2131–2136 (2014)

    CAS  Google Scholar 

  21. H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J.K. Nørskov, Y. Cui, Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Research 8(2), 566–575 (2015)

    CAS  Google Scholar 

  22. J. Bonde, P.G. Moses, T.F. Jaramillo, J.K. Norskov, I. Chorkendorff, Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discussions 140, 219–231 (2008)

    CAS  Google Scholar 

  23. Y. Shi, Y. Zhou, D.R. Yang, W.X. Xu, C. Wang, F.B. Wang, J.J. Xu, X.H. Xia, H.Y. Chen, Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. Journal of the American Chemical Society 139(43), 15479–15485 (2017)

    CAS  Google Scholar 

  24. X. Sun, J. Dai, Y.Q. Guo, C.Z. Wu, F.T. Hu, J.Y. Zhao, X.C. Zeng, Y. Xie, Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale 6(14), 8359–8367 (2014)

    CAS  Google Scholar 

  25. S. Bolar, S. Shit, J.S. Kumar, N.C. Murmu, R.S. Ganesh, H. Inokawa, T. Kuila, Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. Applied Catalysis B: Environmental 254, 432–442 (2019)

    CAS  Google Scholar 

  26. G. Liu, Y. Qiu, Z. Wang, J. Zhang, X. Chen, M. Dai, D. Jia, Y. Zhou, Z. Li, P. Hu, Efficiently synergistic hydrogen evolution realized by trace amount of Pt-decorated defect-rich SnS2 nanosheets. ACS Applied Materials & Interfaces 9(43), 37750–37759 (2017)

    CAS  Google Scholar 

  27. X. Chen, Z. Wang, Y. Qiu, J. Zhang, G. Liu, W. Zheng, W. Feng, W. Cao, P. Hu, W. Hu, Controlled growth of vertical 3D MoS2(1-x)Se2x nanosheets for an efficient and stable hydrogen evolution reaction. Journal of Materials Chemistry A 4(46), 18060–18066 (2016)

    CAS  Google Scholar 

  28. A. Kagkoura, I. Tzanidis, V. Dracopoulos, N. Tagmatarchis, D. Tasis, Template synthesis of defect-rich MoS2-based assemblies as electrocatalytic platforms for hydrogen evolution reaction. Chemical Communications 55(14), 2078–2081 (2019)

    CAS  Google Scholar 

  29. S. Wenwu, W. Zhiguo, F. Yong Qing, Rhenium doping induced structural transformation in mono-layered MoS2 with improved catalytic activity for hydrogen evolution reaction. Journal of Physics D 50, 405303 (2017)

    Google Scholar 

  30. W. Shi, Z. Wang, Effect of oxygen doping on the hydrogen evolution reaction in MoS2 monolayer. J. Taiwan Inst. Chem. E. 82, 163–168 (2018)

    CAS  Google Scholar 

  31. D.Z. Wang, Y.Y. Xie, Z.Z. Wu, Amorphous phosphorus-doped MoS2 catalyst for efficient hydrogen evolution reaction. Nanotechnology 30(20), 205401 (2019)

    CAS  Google Scholar 

  32. W. Shi, S. Wu, Z. Wang, Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping. Journal of Nanoparticle Research 20(10), 271 (2018)

    Google Scholar 

  33. Q.F. Gong, L. Cheng, C.H. Liu, M. Zhang, Q.L. Feng, H.L. Ye, M. Zeng, L.M. Xie, Z. Liu, Y.G. Li, Ultrathin MoS2(1-x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catalysis 5(4), 2213–2219 (2015)

    CAS  Google Scholar 

  34. W.C. Zhang, X.B. Liao, X.L. Pan, M.Y. Yan, Y.X. Li, X.C. Tian, Y. Zhao, L. Xu, L.Q. Mai, Superior hydrogen evolution reaction performance in 2H-MoS2 to that of 1T phase. Small 15(31), 1900964 (2019)

    Google Scholar 

  35. H. Zhu, M. Du, M. Zhang, M. Zou, T. Yang, S. Wang, J. Yao, B. Guo, S-rich single-layered MoS2 nanoplates embedded in N-doped carbon nanofibers: Efficient co-electrocatalysts for the hydrogen evolution reaction. Chemical Communications 50(97), 15435–15438 (2014)

    CAS  Google Scholar 

  36. Y. Guo, X. Zhang, X. Zhang, T. You, Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. Journal of Materials Chemistry A 3(31), 15927–15934 (2015)

    CAS  Google Scholar 

  37. Z.C. Li, J.J. Ma, Y. Zhou, Z.M. Yin, Y.B. Tang, Y.X. Ma, D.B. Wang, Synthesis of sulfur-rich MoS2 nanoflowers for enhanced hydrogen evolution reaction performance. Electrochimica Acta 283, 306–312 (2018)

    CAS  Google Scholar 

  38. W. Fengmei, L. Yuanchang, S.T. Ahmed, L. Kaili, W. Feng, W. Zhenxing, X. Peng, W. Qisheng, H. Jun, Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Agnew. Chem. Int. Ed. 128, 7033–7038 (2016)

    Google Scholar 

  39. E. Skulason, G.S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jonsson, J.K. Norskov, Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Physical Chemistry Chemical Physics 9(25), 3241–3250 (2007)

    CAS  Google Scholar 

  40. A.P. Murthy, J. Theerthagiri, J. Madhavan, K. Murugan, Highly active MoS2/carbon electrocatalysts for the hydrogen evolution reaction – Insight into the effect of the internal resistance and roughness factor on the Tafel slope. Physical Chemistry Chemical Physics 19(3), 1988–1998 (2017)

    CAS  Google Scholar 

  41. M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu, J. Jiang, Q. Gao, J. Li, S.H. Yu, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications 6(1), 5982 (2015)

    CAS  Google Scholar 

  42. G. Gao, A.P. O’Mullane, A. Du, 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catalysis 7(1), 494–500 (2017)

    CAS  Google Scholar 

  43. S. Liu, J. Li, B. Shi, X. Zhang, Y. Pan, M. Ye, R. Quhe, Y. Wang, H. Zhang, J. Yan, L. Xu, Y. Guo, F. Pan, J. Lu, Gate-tunable interfacial properties of in-plane ML MX2 1T′–2H heterojunctions. Journal of Materials Chemistry C 6(21), 5651–5661 (2018)

    CAS  Google Scholar 

  44. J. Zhang, Y. Zhao, X. Guo, C. Chen, C.L. Dong, R.S. Liu, C.P. Han, Y. Li, Y. Gogotsi, G. Wang, Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis 1(12), 985–992 (2018)

    CAS  Google Scholar 

  45. D. Er, H. Ye, N.C. Frey, H. Kumar, J. Lou, V.B. Shenoy, Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides. Nano Letters 18(6), 3943–3949 (2018)

    CAS  Google Scholar 

  46. C. Ling, L. Shi, Y. Ouyang, Q. Chen, J. Wang, Transition metal-promoted V2CO2 (MXenes): A new and highly active catalyst for hydrogen evolution reaction. Advancement of Science 3, 1600180 (2016)

    Google Scholar 

  47. C. Ling, L. Shi, Y. Ouyang, J. Wang, Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chemistry of Materials 28(24), 9026–9032 (2016)

    CAS  Google Scholar 

  48. H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials 15(1), 48–53 (2016)

    CAS  Google Scholar 

  49. Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews 44(8), 2060–2086 (2015)

    CAS  Google Scholar 

  50. W. Schmickler, S. Trasatti, Comment on “Trends in the exchange current for hydrogen evolution”. Journal of the Electrochemical Society 153(12), L31 (2006)

    CAS  Google Scholar 

  51. J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials 5(11), 909–913 (2006)

    CAS  Google Scholar 

  52. J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution. Journal of the Electrochemical Society 152, 23 (2005)

    Google Scholar 

  53. M.W. Jiang, Y. Huang, W. Sun, X.J. Zhang, Co-doped SnS2 nanosheet array for efficient oxygen evolution reaction electrocatalyst. Journal of Materials Science 54(21), 13715–13723 (2019)

    CAS  Google Scholar 

  54. Y.M. Fu, F.R. Cao, F.L. Wu, Z.D. Diao, J. Chen, S.H. Shen, L. Li, Phase-modulated band alignment in CdS nanorod/SnSx nanosheet hierarchical heterojunctions toward efficient water splitting. Advanced Functional Materials 28(16), 1706785 (2018)

    Google Scholar 

  55. R. Schlaf, N.R. Armstrong, B.A. Parkinson, C. Pettenkofer, W. Jaegermann, Van der Waals epitaxy of the layered semiconductors SnSe2 and SnS2 : morphology and growth modes. Surface Science 385(1), 1–14 (1997)

    CAS  Google Scholar 

  56. Y. Su, M.A. Ebrish, E.J. Olson, S.J. Koester, SnSe2 field-effect transistors with high drive current. Applied Physics Letters 103, 8983 (2013)

    Google Scholar 

  57. Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Agnew. Chem. Int. Ed. 51(35), 8727–8731 (2012)

    CAS  Google Scholar 

  58. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for ab initio order-N materials simulation. Journal of Physics. Condensed Matter 14(11), 2745–2779 (2002)

    CAS  Google Scholar 

  59. N. Troullier, J.L. Martins, Efficient psedopotentials for plane-wave calculation. Physical Review B 43(3), 1993–2006 (1991)

    CAS  Google Scholar 

  60. J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. The Journal of Physical Chemistry. B 108(46), 17886–17892 (2004)

    CAS  Google Scholar 

  61. J. Rossmeisl, A. Logadottir, J.K. Norskov, Electrolysis of water on (oxidized) metal surfaces. Chemical Physics 319(1-3), 178–184 (2005)

    CAS  Google Scholar 

  62. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials 12(9), 850–855 (2013)

    CAS  Google Scholar 

  63. S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics 19, 553–566 (1970)

    CAS  Google Scholar 

  64. X. Sun, Z. Wang, Z. Li, Y.Q. Fu, Origin of structural transformation in mono- and bi-layered molybdenum disulfide. Scientific Reports 6(1), 26666 (2016)

    CAS  Google Scholar 

  65. Y. Wang, L. Huang, B. Li, J. Shang, C. Xia, C. Fan, H.X. Deng, Z. Wei, J. Li, Composition-tunable 2D SnSe2(1−x)S2x alloys towards efficient bandgap engineering and high performance (opto)electronics. Journal of Materials Chemistry C 5, 84–90 (2016)

    CAS  Google Scholar 

  66. J.J. Liu, E.D. Hua, High photocatalytic activity of heptazine-based g-C3N4/SnS2 heterojunction and its origin: Insights from hybrid DFT. Journal of Physical Chemistry C 121(46), 25827–25835 (2017)

    CAS  Google Scholar 

  67. Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Agnew. Chem. Int. Ed. 51(35), 8727–8731 (2012)

    CAS  Google Scholar 

  68. S. Dong, Z. Wang, Improving the catalytic activity for hydrogen evolution of monolayered SnSe2(1−x)S2x by mechanical strain. Beilstein Journal of Nanotechnology 9, 1820–1827 (2018)

    CAS  Google Scholar 

  69. Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, J. Wang, Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chemistry of Materials 28(12), 4390–4396 (2016)

    CAS  Google Scholar 

  70. Y.R. An, X.L. Fan, Z.F. Luo, W.M. Lau, Nanopolygons of monolayer MS2: Best morphology and size for HER catalysis. Nano Letters 17(1), 368–376 (2017)

    CAS  Google Scholar 

  71. S.H. Lin, J.L. Kuo, Activating and tuning basal planes of MoO2, MoS2, and MoSe2 for hydrogen evolution reaction. Physical Chemistry Chemical Physics 17(43), 29305–29310 (2015)

    CAS  Google Scholar 

  72. B. Hammer, J. Nørskov, Electronic factors determining the reactivity of metal surfaces. Surface Science 343(3), 211–220 (1995)

    CAS  Google Scholar 

  73. Y. Hao, Y.T. Wang, L.C. Xu, Z. Yang, R. Liu, X. Li, 1T-MoS2 monolayer doped with isolated Ni atoms as highly active hydrogen evolution catalysts: A density functional study. Applied Surface Science 469, 292–297 (2019)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, Z. Density Functional Theory Study on the Hydrogen Evolution Reaction in the S-rich SnS2 Nanosheets. Electrocatalysis 11, 604–611 (2020). https://doi.org/10.1007/s12678-020-00618-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00618-7

Keywords

Navigation