Skip to main content
Log in

Analytic Properties of Solutions to Equations in the Generalized Hierarchy of the Second Painlevé Equation

  • ORDINARY DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider the analytic properties of solutions to equations of arbitrary order in the generalized hierarchy of the second Painlevé equation. The local properties of solutions, the Bäcklund transformations, and rational solutions and their representations via generalized Yablonskii–Vorob’ev polynomials are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. From now on, \(\beta =(\beta _{1},\ldots ,\beta _{N-1})\) .

REFERENCES

  1. Ablowitz, M. and Segur, H., Solitons and the Inverse Scattering Transform, Philadelphia: SIAM, 1981.

    Book  MATH  Google Scholar 

  2. Iwasaki, K., Kimura, H., Simomura, S., and Ioshida, M., From Gauss to Painlevé—a Modern Theory of Special Functions. Aspects of Mathematics. V. E16, Wiesbaden: Vieweg, 1991.

    Google Scholar 

  3. Its, A.R. and Novokshenov, V.Yu., The Isomonodromy Deformation Method in the Theory of Painlevé Equations. Lecture Notes in Mathematics. Vol. 1191 , Berlin–Heidelberg: Springer, 1986.

    Google Scholar 

  4. Kitaev, A.V., Special functions of the isomonodromy type, Acta Appl. Math., 2000, vol. 64, no. 1, pp. 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gromak, V.I., Laine, I., and Shimomura, S., Painlevé Differential Equations in the Complex Plane. De Gruyter. Studies in Mathematics. Vol. 28 , Berlin–New York: Walter de Gruyter, 2002.

    Book  MATH  Google Scholar 

  6. Kudryashov, N.A., Analiticheskaya teoriya nelineinykh differentsial’nykh uravnenii (Analytic Theory of Nonlinear Differential Equations), Moscow–Izhevsk: Inst. Kom’yut. Issled., 2004.

    Google Scholar 

  7. Fokas, A.S., Its, A.R., Kapaev, A.A., and Novokshenov, V.Yu., Transtsendenty Penleve. Metod zadachi Rimana, Moscow–Izhevsk: Inst. Komp’yut. Issled., 2005. Translated under the title: Painlevé Transcendents. The Riemann–Hilbert Approach, Providence, RI: Am. Math. Soc., 2006.

    Google Scholar 

  8. Conte, R. and Musette, M., The Painlevé Handbook, Dordrecht: Springer, 2008.

    MATH  Google Scholar 

  9. Bolibrukh, A.A., Obratnye zadachi monodromii v analiticheskoi teorii differentsial’nykh uravnenii (Inverse Monodromy Problems in the Analytic Theory of Differential Equations), Moscow: MTsNMO, 2009.

    Google Scholar 

  10. Slavyanov, S.Yu. and Lai, V., Spetsial’nye funktsii: edinaya teoriya, osnovannaya na analize osobennostei (Special Functions: a Unified Theory Based on Analysis of Singularities), Leningrad: Nevskii Dialekt, 2002.

    Google Scholar 

  11. Kudryashov, N.A., Metody nelineinoi matematicheskoi fiziki (Methods of Nonlinear Mathematical Physics), Dolgoprudnyi: Intellekt, 2010.

    Google Scholar 

  12. Fuchs, R., Sur quelques équations différentielles linéaires, C.R. Acad. Sci. Paris, 1905, vol. 141, pp. 55–558.

    Google Scholar 

  13. Flashka, H. and Newell, A.C., Monodromy and spectrum preserving deformations. I, Commun. Math. Phys., 1980, vol. 76, pp. 65–116.

    Article  MathSciNet  MATH  Google Scholar 

  14. Jimbo, M., Miwa, T., and Ueno, K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I, Physica 2D, 1981, pp. 306–352.

  15. Jimbo, M. and Miwa, T., Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II, Physica 2D, 1981, pp. 407–448.

  16. Noumi, M., Painlevé Equations Through Symmetry. Vol. 223 , Providence, RI: Am. Math. Soc., 2004.

    Book  Google Scholar 

  17. Noumi, M. and Yamada, M., Affine Weyl group approach to Painlevé equations, Commun. Math. Phys., 1998, vol. 199, pp. 291–295.

    Article  Google Scholar 

  18. Okamoto, K., The Hamiltonians associated to the Painlevé equations, in The Painlevé Property. One Century Later. CRM series in Mathematical Physics, Conte, R., Ed., Berlin–Heidelberg–New York–Tokyo: Springer-Verlag, 1999, pp. 735–787.

  19. Airault, H., Rational solutions of Painlevé equations, Stud. Appl. Math., 1979, vol. 61, pp. 31–53.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kudryashov, N.A., Two hierarchies of ordinary differential equations and their properties, Phys. Lett. A, 1999, vol. 252, no. 3–4, pp. 173–179.

    Article  MathSciNet  MATH  Google Scholar 

  21. Gromak, V.I., Bäcklund transformations of the Painlevé equations and their applications, in The Painlevé Property. One Century Later. CRM Series in Mathematical Physics, Conte, R., Ed., Berlin–Heidelberg–New York–Tokyo: Springer-Verlag, 1999, pp. 687–734.

  22. Clarkson, P.A., Joshi, N., and Pickering, A., Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach,Inverse Probl., 1999, vol. 15, pp. 175–187.

    Article  MATH  Google Scholar 

  23. Clarkson, P.A. and Mansfield, E.L., The second Painlevé equation, its hierarchy and associated special polynomials, Nonlinearity, 2003, vol. 16, pp. R1–R26.

    Article  MATH  Google Scholar 

  24. Kudryashov, N.A., Amalgamations of the Painlevé equations,J. Math. Phys., 2003, vol. 44, no. 12, pp. 6160–6178.

    Article  MathSciNet  MATH  Google Scholar 

  25. Sakka, A.H., Linear problems and hierarchies of Painlevé equations,J. Phys. A. Math. Theor., 2009, vol. 42, p. 025210.

    Article  MathSciNet  MATH  Google Scholar 

  26. Noumi, M. and Yamada, Y., Higher order Painlevé equations of type \(A_{l}^{1)} \), Funkc. Ekvac., 1998, vol. 41, pp. 483–503.

    MATH  Google Scholar 

  27. Adler, V.E., Nonlinear chains and Painlevé equations, Physica D, 1994, vol. 73, pp. 335–351.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kudryashov, N.A., One generalization of the second Painlevé hierarchy, J. Phys. A. Math. Gen., 2002, no. 35, pp. 93–99.

  29. Yablonskii, A.I., On rational solutions to the second Painlevé equation, Izv. Akad. Nauk BSSR. Ser. Fiz.-Tekhn. Nauk, 1959, no. 3, pp. 30–35.

  30. Vorob’ev, A.P., On rational solutions to the second Painlevé equation, Differ. Uravn., 1965, vol. 1, no. 1, pp. 79–81.

    Google Scholar 

  31. Demina, M.V. and Kudryashov, N.A., Special polynomials and rational solutions of the hierarchy of the second Painlevé equation, Theor. Math. Phys., 2007, vol. 153, no. 1, pp. 1398–1406.

    Article  MATH  Google Scholar 

  32. Okamoto, K., Studies on the Painlevé equations, III. Second and Fourth Painlevé equations, \(P_{II}\) and \(P_{IV} \), Math. Ann., 1986, vol. 275, no. 2, pp. 221–255.

    MathSciNet  MATH  Google Scholar 

  33. Umemura, H., The Painlevé equations and classical functions,Sugaki Exositions, 1998, vol. 11, no. 1, pp. 77–100.

    MathSciNet  Google Scholar 

  34. Lax, P.D., Integrals of nonlinear equations of evolution and solitary waves,Commun. Pure Appl. Math., 1968, vol. 21, pp. 467–490.

    Article  MathSciNet  MATH  Google Scholar 

  35. Gromak, V.I., On solutions to higher-order Painlevé equations, in Analiticheskie metody analiza i differentsial’nykh uravnenii: tez. dokl. mezhdunar. nauch. seminara (Analytic Methods of Analysis and Differential Equations: Proc. Int. Sci. Semin.), Rogozin, S.V., Ed., September 11–14, 2012, Minsk, 2012, p. 27.

  36. Gromak, V.I. and Zenchenko, A.S., On the theory of higher-order Painlevé equations, Differ. Equations, 2004, vol. 40, no. 5, pp. 625–633.

    Article  MathSciNet  MATH  Google Scholar 

  37. Gromak, V.I. and Golubeva, L.L., Generalized second Painlevé equation of the fourth order, Vestsi Nats. Akad. Navuk Belarusi. Ser. Fiz.-Mat. Navuk, 2005, no. 4, pp. 5–10.

  38. Golubeva, L.L. and Zenchenko, A.S., Some properties of solutions to the equation \( (_{4}\widetilde {P}_{2})\), Tr. Inst. Mat. Nats. Akad. Navuk Belarusi, 2004, vol. 12, no. 2, pp. 54–56.

    Google Scholar 

  39. Gromak, V.I., Solutions of the Fourth-Order Equation in the Generalized Hierarchy of the Second Painlevé Equation, Differ. Equations, 2019, vol. 55, no. 3, pp. 328–339.

    Article  MathSciNet  MATH  Google Scholar 

  40. Gromak, V.I., On the theory of the second Painlevé equation,Vestn. Belorus. Gos. Univ., 1974, no. 3, pp. 73–75.

  41. Ince, E.L., Integration of Ordinary Differential Equations, Edinburgh: Oliver and Boyd, 1939.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Gromak.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromak, V.I. Analytic Properties of Solutions to Equations in the Generalized Hierarchy of the Second Painlevé Equation. Diff Equat 56, 993–1009 (2020). https://doi.org/10.1134/S0012266120080030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266120080030

Navigation