Skip to main content
Log in

Mesophotic azooxanthellate coral communities and submarine seascape during the early Pliocene in Manilva Basin (S Spain)

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Azooxanthellate corals are the most abundant macrofossils in the lower Pliocene deposits of the Manilva Basin (S Spain). In this paper, the cnidarian fossil assemblages have been studied in order to reconstruct the original communities and to depict the seascapes. Benthic foraminiferal assemblages associated with the corals have also been analysed to infer the palaeoenvironmental conditions in which they developed. Two sections have been studied. In the Canuto section, Coenosmilia fecunda dominates the cnidarian assemblage, followed by Asterosmilia cf. prolifera and Asterosmilia sp., which are all preserved as moulds and casts. Benthic foraminiferal assemblages indicate oligotrophic conditions and deposition from the middle platform to the upper slope. The Álamos section is characterized by Madrepora oculata, Dendrophyllia ramea, Asterosmilia cf. prolifera, Asterosmilia sp., Coenosmilia fecunda, and gorgonians of the Isididae family (most likely Keratoisis melitensis and/or Lepidisis longiflora), as well as a basal holdfast attributed to a member of either Primnoidae or the Chrysogorgiidae family. Here, corals preserve their original skeletons. Benthic foraminifers suggest deposition in oligotrophic conditions in mid–outer platform settings. Corals in the Canuto section formed autochthonous fossil assemblages, while in the Álamos section they were slightly displaced from their original growth positions to form parautochthonous fossil concentrations. The cnidarian community in the Canuto section was characterized by low-tier organisms either attached to hard substrates provided by skeletal remains (Coenosmilia fecunda) or inhabiting fine-grained bottoms (Asterosmilia spp.). In the Álamos section, Coenosmilia fecunda and Asterosmilia spp. occupied the lowest tier levels. The gorgonians, isidids and members of the Primnoidae or Chrysogorgiidae families, colonized both soft and hard substrates, dominating the next tier level. Finally, Madrepora oculata and Dendrophyllia ramea settled on submarine cliffs or on large blocks derived from substrate, inhabiting the highest position in the community. Large specimens of gorgonians could have also occupied this position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguirre J (2000) Evolución paleoambiental y análisis secuencial de los depósitos Pliocenos de Almayate (Málaga, S de España). Rev Soc Geol Esp 13:431–443

    Google Scholar 

  • Aguirre J, Cachão M, Domènech R, Lozano-Francisco MC, Martinell J, Mayoral E, Santos A, Vera-Peláez JL, Da Silva CM (2005) Integrated biochronology of the Pliocene deposits of the Estepona basin (Málaga, S Spain). Palaeobiogeographic and palaeoceanographic implications. Rev. Esp. Paleontol. 20:225–245

    Google Scholar 

  • Aguirre J, Martín JM, Braga JC, Betzler C, Berning B, Buckeridge JS (2008) Densely-packed concentrations of sessile barnacles (Cirripedia: Sessilia) from the early Pliocene of SE Spain. Facies 54:193–206

    Article  Google Scholar 

  • Aguirre J, Braga JC, Martín JM, Puga-Bernabéu Á, Pérez-Asensio JN, Sánchez-Almazo IM, Genio L (2015) An enigmatic kilometre-scale concentration of small mytilids (Late Miocene, Guadalquivir Basin, S Spain). Palaeogeog Palaeoclimatol Palaeoecol 436:199–213

    Article  Google Scholar 

  • Aguirre J, Domènech R, Martinell J, Mayoral E, Santos A, Pérez-Asensio JN (2017) Witnesses of the early Pliocene sea-level rise in the Manilva Basin (Málaga, S Spain). Spanish J Palaeontol 32:35–52

    Article  Google Scholar 

  • Angeletti L, Taviani M (2020) Offshore Neopycnodonte oyster reefs in the Mediterranean Sea. Diversity. https://doi.org/10.3390/d12030092

    Article  Google Scholar 

  • Arístegui J, Brito A, Cruz T, Bacallao JJ, Barquín J, Núñez J, Pérez-Dionis G (1987) El poblamiento de los fondos marinos de Dendrophyllia ramea (Anthozoa, Scleractinia) en las Islas Canarias. Cuad Marisq Publ Téc 11:163–181

    Google Scholar 

  • Barbieri R, Ori GG (2000) Neogene palaeoenvironmental evolution in the Atlantic side of the Rifian Corridor (Morocco). Palaeogeog Palaeoclimatol Palaeoecol 163:1–31

    Article  Google Scholar 

  • Barrier P, Di Geronimo I, Montenat C, Roux M, Zibrowius H (1989) Présence de faunes bathyales atlantiques dans le Pliocène et le Pléistocène de la Méditerranée (Detroit de Messine, Italie). Bull Soc Geol Fr ser 8(5):787–796

    Article  Google Scholar 

  • Barrier P, Di Geronimo I, La Perna R, Rosso A, Sanfilippo R, Zibrowius H (1996) Taphonomy of deep-sea hard and soft bottom communities: the Pleistocene of Lazzaro (southern Italy). In: Meléndez G, Blasco-Sancho F, Pérez-Urresti I (eds) Tafonomía y fosilizaión. Zaragoza, pp 39–46

  • Barrier P, Zibrowius H, Lozouet P, Montenat C, Ott D’Estevou P, Serrano F, Soudet HJ (1992) Une faune de fond dur du bathyal supérieur dans le Miocène terminal des Cordillères Bétiques (Carboneras, SE Espagne) Mesogée 51:3–13

  • Berggren WA, Haq BU (1976) The Andalusian Stage (Late Miocene): biostratigraphy, biochronology and palaeoecology. Palaeogeog Palaeoclimatol Palaeoecol 20:67–129

    Article  Google Scholar 

  • Bertness MD (1989) Intraspecific competition and facilitation in a northern acorn barnacle population. Ecology 70:257–268

    Article  Google Scholar 

  • Bertness MD, Gaines SD, Yeh SM (1998) Making mountains out of barnacles: the dynamic of acorn barnacle hummocking. Ecology 79:1382–1394

    Article  Google Scholar 

  • Beuck L, Aguilar R, Fabri M, Freiwald A, Gofas S, Hebbeln D, López Correa M, Ramos Martos A, Ramil F, Sánchez Delgado F, Taviani M, Wienberg C, Wisshak M, Zibrowius H (2016) Biotope characterisation and compiled geographical distribution of the deep-water oyster Neopycnodonte zibrowii in the Atlantic Ocean and Mditerrnanean Sea. Rapp Comm int Mer Médit 41:462

    Google Scholar 

  • Bo M, Bavestrello G (2019) Mediterranean black coral communities. In: Orejas C, Jiménez C (eds) Mediterranean cold-water corals: past, present and future. Understanding the deep-sea realms of coral, Springer, pp 249–251

    Chapter  Google Scholar 

  • Bo M, Bavestrello G, Angiolillo M, Calcagnile L, Canese S, Cannas R, Cau A, D’Ella M, D’Oriano F, Follesa MC, Quarta G, Cau A (2015) Persistence of pristine deep-sea coral gardens in the Mediterranean Sea (SW Sardina). PLoS One 10(3):e0119393. https://doi.org/10.1371/journal.pone.0119393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braga-Henriques A, Carreiro-Silva M, Porteiro FM, de Matos V, Sampaio I, Ocaña O, Avila SP (2010) The association between a deep-sea gastropod Pedicularia sicula (Caenogastropoda: Pediculariidae) and its coral host Errina dabneyi (Hydrozoa: Stylasteridae) in the Azores. ICES J Mar Sc 68:399–407

    Article  Google Scholar 

  • Brito A, Ocaña O (2004) Corales de las Islas Canarias. Francisco Lemus Editor, La Laguna

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P et al (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol. 31:21–50

    Article  Google Scholar 

  • Buhl-Mortensen P, Buhl-Mortensen L, Purser A (2017) Trophic ecology and habitat provision in cold-water coral ecosystems. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests. The ecology of benthic biodiversity hotspots, Springer, pp 919–944

    Chapter  Google Scholar 

  • Cairns SD (1977) Stony corals. I. Caryophylliina and Dendrophylliina (Anthozoa: Scleractinia). Mar Res Lab Fl Depart Nat Resour St Petersburg, Fl 3:1–27

    Google Scholar 

  • Cairns SD (1995) The marine fauna of New Zealand: Scleractinia (Cnidaria: Anthozoa). NZ Oceanogr Inst Mem. 103:1–210

    Google Scholar 

  • Cairns SD, Jaap WC, Lang JC (2009) Scleractinia (Cnidaria) of the Gulf of Mexico. In: Felder DL, Camp DK (eds) Gulf of Mexico—Origins, waters, and biota. Biodiversity. Texas A&M Univ Press, College Station, pp 333–347

    Google Scholar 

  • Cartes JE, Lo Iacono C, Mamouridis V, López-Pérez C, Rodríguez P (2013) Geomorphological, trophic and human influences on the bamboo coral Isidella elongata assemblages in the deep Mediterranean: to what extent does Isidella form habitat for fish and invertebrates? Deep-Sea Res I 76:52–65

    Article  Google Scholar 

  • Castellan G, Angeletti L, Taviani M, Montagna P (2019) The yellow coral Dendrophyllia cornigera in a warming ocean. Front Mar Sci 6:692. https://doi.org/10.3389/fmars.2019.00692

    Article  Google Scholar 

  • Corriero G, Pierri C, Mercurio M, Marzano CN, Tarantini SO, Gravina MF, Lisco S, Moretti M, De Giosa F, Valenzano E, Giangrande A, Mastrodonato M, Longo C, Cardone F (2019) A Mediterranean mesophotic coral reef built by non-symbiotic scleractinians. Sci Rep 9:3601. https://doi.org/10.1038/s41598-019-40284-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Geronimo I (1987) Bionomie des peuplements benthiques des substrats meubles et rocheux plio-quaternaires du Détroit de Messine. Doc Trv IGAL 11:153–170

    Google Scholar 

  • Di Geronimo I, Messina C, Rosso A, Sanfilippo R, Sciuto F, Vertino A (2005) Enhanced biodiversity in the deep: early Pleistocene coral communities from southern Italy. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin Heidelberg, pp 61–86

    Chapter  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Berghuts EM (2004) Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Mar Ecol Prog Ser 277:13–23

    Article  Google Scholar 

  • Ercilla G, Juan C, Periáñez R, Alonso B, Abril JM, Estrada F, Casas D, Vázquez JT, d’Acremont E, Gotini C, El Moumni B, Do Couto D, Valencia J (2019) Influence of alongshore processes on modern turbidite systems and canyons in the Alboran Sea (southwestern Mediterranean). Deep-Sea Res Part I 144:1–16

    Article  Google Scholar 

  • Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schülter M, van Weering T (eds) Ocean margin systems. Springer-Verlag, Berlin Heidelberg, pp 365–385

    Chapter  Google Scholar 

  • Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water reef mound from Stjernsund, West Finnmark, northern Norway. In: James NP, Clarke JAD (eds) Cold-water carbonates. SEPM, Tulsa, Oklahoma. Sp. Publ. 56:141-162

  • Freiwald A, Beuck L, Rüggeberg A, Taviani M, Hebbeln D, R/V Meteor Cruise M70–1 Participants (2009) The white coral community in the central Mediterranan Sea revealed by ROV surveys. Oceanography 22:58–74

    Article  Google Scholar 

  • Freiwald A, Rogers A, Hall-Spencer J, Guinotte JM, Davies AJ, Yesson C, Martin CS, Weatherdon LV (2017) Global distribution of cold-water corals (version 5.0). Fifth update to the dataset in Freiwald et al (2004) by UNEP-WCMC, in collaboration with Andre Freiwald and John Guinotte. Cambridge (UK): UN Environment World Conservation Monitoring Centre. http://data.unep-wcmc.org/datasets/3

  • Gori A, Orejas C, Madurell T, Bramanti L, Martins M, Quintanilla E, Marti-Puig P, Lo Iacono C, Puig P, Requena S, Greenacre M, Gili JM (2013) Bathymetrical distribution and size structure of coldwater coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences 10:2049–2060

    Article  Google Scholar 

  • Gori A, Bavestrello G, Grinyó J, Dominguez-Carrió C, Ambroso S, Bo M (2017) Animal forests in deep coastal bottoms and continental shelves of the Mediterranean Sea. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests. The ecology of benthic biodiversity hotspots, Springer, pp 207–233

    Chapter  Google Scholar 

  • Henry LA, Roberts JM (2007) Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep-Sea Res I 54:654–672

    Article  Google Scholar 

  • Henry LA, Roberts JM (2017) Global biodiversity in cold-water coral reef ecosystems. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests. The ecology of benthic biodiversity hotspots, Springer, pp 235–256

    Chapter  Google Scholar 

  • Hollingworth NTJ, Barker MJ (1991) Colour pattern preservation in the fossil record: Taphonomy and diagenetic significance. In: Donovan SK (ed) The processes of fossilization. Belhaven Press, London, pp 105–119

    Google Scholar 

  • Hubbard RH, Wells JW (1986) Ahermatypic shallow-water scleractinian corals of Trinidad. Studies of the Fauna of Curaçao and other Caribbean Islands 211:121–147

    Google Scholar 

  • Johnson MP, White M, Wilson A, Würzberg L, Schwabe E, Folch H, Allcock AL (2013) A vertical wall dominated by Acesta excavata and Neopycnodonte zibrowii, part of an undersampled group of deep-sea habitats. PLos-ONE 8(11):e79917. https://doi.org/10.1371/journal.pone.0079917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorissen FJ, de Stigter HC, Widmark JGV (1995) A conceptual model explaining benthic foraminiferal microhabitats. Mar Micropaleontol 26:3–15

    Article  Google Scholar 

  • Kidwell SM, Bosence DWJ (1991) Taphonomy and time-averaging of marine shelly fauna. In: Allison PA, Briggs DEG (eds) Taphonomy, releasing the data locked in the fossil record. Kluwer Academic, New York, pp 115–209

    Chapter  Google Scholar 

  • Langer M (1989) Haftorgan, Internodien und Sklerite von Keratoisis melitensis (Goldfuss, 1862) (Octocorallia) in den pliozänen Foraminiferenmergeln (» Trubi «) von Milazzo (Sizilien). Paläont Z 63:15–24

    Article  Google Scholar 

  • Langer MR (1988) Recent epiphytic foraminifera from Vulcano (Mediterranean Sea). Rev Paléobiol 2:827–832

    Google Scholar 

  • Langer MR (1993) Epiphytic foraminifera. Mar Micropaleontol 20:235–265

    Article  Google Scholar 

  • Lastras G, Sánchez-Vidal A, Canals M (2019) A cold-water coral habitat in La Fonera submarine canyos, northwestern Mediterranean Sea. In: Orejas C, Jiménez C (eds) Mediterranean cold-water corals: past, present and future. Understanding the deep-sea realms of coral. Springer, New York, pp 291–293

    Chapter  Google Scholar 

  • Le Loc’h F, Hily C, Grall J (2008) Benthic community and food web structure on the continental shelf of the Bay of Biscay (North Eastern Atlantic) revealed by stable isotopes analysis. J. Mar. Syst 72:17–34

    Article  Google Scholar 

  • Lirer F, Foresi LM, Iaccarino SM, Salvatorini G, Turco E, Cosentino C, Sierro FJ, Caruso A (2019) Mediterranean Neogene planktonic foraminifer biozonation and biochronology. Earth-Sc Rev 196:102869. https://doi.org/10.1016/j.earscirev.2019.05.013

    Article  Google Scholar 

  • Martín-Algarra A (1987) Evolución geológica alpina del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Bética. Ph.D. thesis, University of Granda. 2 vols p 1171

  • Mastrototaro F, Chimenti G, Acosta J, Blanco J, Gacia S, Rivera J, Aguilar R (2017) Isidella elongata (Cnidaria: Alcyonacea) facies in the western Mediterranean Sea: visual surveys and descriptions of its ecological role. Eur Zool J 84:209–225

    Article  Google Scholar 

  • Maynou F, Cartes JE (2011) Effects of trawling on fish and invertebrates from deep-sea coral facies of Isidella elongata in the western Mediterranean. J Mar Biol Ass UK

  • Mortensen PB, Buhl-Mortensen L (2005) Morphology and growth of the deep-water gorgonians Primnoa resedaeformis and Paragorgia arborea. Mar Biol 147:775–788

    Article  Google Scholar 

  • Murray JW (1991) Ecology and palaeoecology of benthic foraminifera. Longman Scientific & Technical, UK

    Google Scholar 

  • Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ocaña O, Brito A (2018) Zoanthids parasitizing Anthozoa: taxonomy, ecology and morphological evolution by genomes acquisition. Rev Acad Canar Cienc 30:103–134

    Google Scholar 

  • Ocaña O, Ramos A, Templado J (2009) Paisajes sumergidos de la region de Ceuta y su biodiversidad. Ceuta, Fundación Museo del Mar, p 254

    Google Scholar 

  • Ocaña O, de Matos V, Aguilar R, García S, Brito A (2017) Illustrated catalogue of cold-water corals (Cnidaria: Anthozoa) from Alboran basin and north eastern Atlantic submarine mountains, collected in Oceana campaigns. Rev Acad Canar Cienc 29:221–256

    Google Scholar 

  • Orejas C, Jiménez C (2017) The builders of the oceans – Part I: coral architecture from the tropics to the poles, from shallow to the deep. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests. The ecology of benthic biodiversity hotspots, Springer, pp 627–655

    Chapter  Google Scholar 

  • Orejas C, Jiménez C (2019) Mediterranean cold-water corals: past, present and future. Understanding the deep-sea realms of coral, Springer

    Book  Google Scholar 

  • Orejas C, Gori A, Lo Iacono C, Puig P, Gili JM, Dale MRT (2009) Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Prog Ser 397:37–51

    Article  Google Scholar 

  • Orejas C, Gori A, Jiménez C, Rivera J, Lo Iacono C, Hadjioannou L, Andreou V, Petrou A (2017) First in situ documentation of a population of the coral Dendrophyllia ramea off Cyprus (Levantine Sea) and evidence of human impacts. Galaxea, J Cor Reef Stud 19:15–16

    Article  Google Scholar 

  • Orejas C, Jiménez C, Gori A, Rivera J, Lo Iacono C, Aurelle D, Hadjioannou L, Petrou A, Archilleos K (2019) Corals of Aphrodite: Dendrophyllia ramea populations of Cyprus. In: Orejas C, Jiménez C (eds) Mediterranean cold-water corals: past, present and future. Understanding the deep-sea realms of coral. Springer, Switzerland, pp 257–260

  • Pardo E, Aguilar A, García S, de la Torriente A, Ubero J (2011) Documentación de arrecifes d corales de agua fría en el Mediterráneo occidental (Mar de Alborán). Chron Nat 1:20–34

    Google Scholar 

  • Pérès JM, Picard J (1964) Nouveau manuel de Bionomie benthique de la Mer Méditerranée. Rec Trav Stat Mar d’Endoume 31(47):1–137

    Google Scholar 

  • Pérez-Asensio JN, Aguirre J (2010) Benthic foraminiferal assemblages in temperate coral-bearing deposits from the Late Pliocene. J For Res 40:61–78

    Google Scholar 

  • Pérez-Asensio JN, Aguirre J, Schmiedl G, Civis J (2012) Messinian paleoenvironmental evolution in the lower Guadalquivir Basin (SW Spain) based on benthic foraminifera. Palaeogeog Palaeocl Palaeoecol 326–328:135–151

    Article  Google Scholar 

  • Pérez-Asensio JN, Aguirre J, Schmiedl G, Civis J (2014) Messinian productivity changes in the northeastern Atlantic and their relationship to the closure of the Atlantic-Mediterranean gateway: implications for Neogene palaeoclimate and palaeoceanography. J Geol Soc London 171:389–400

    Article  Google Scholar 

  • Pérez-Asensio JN, Aguirre J, Rodríguez-Tovar FJ (2017) Taphonomic effect of burrowing activity on benthic foraminiferal assemblages. Palaeontology 60:807–827

    Article  Google Scholar 

  • Reyes J, Santodomingo N, Gracia A, Borrero-Pérez G, Navas G, Mejía-Ladino LM, Bermúdez A, Benavides M (2005) Southern Caribbean azooxanthellate coral communities off Colombia. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin Heidelberg, pp 309–330

    Chapter  Google Scholar 

  • Reyes J, Santodomingo N, Cairns S (2009) Caryophylliidae (Scleractinia) from the Colombian Caribbean. Zootaxa 2262:1–39

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Wheeler A, Freiwald A, Cairns S (2009) Cold-water corals. The biology and geology of deep-sea coral habitats, Cambridge University Press, p 334

    Book  Google Scholar 

  • Rossi S, Coppari M, Viladrich N (2017) Benthic-pelagic coupling: new perspectives in the animal forests. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests. The ecology of benthic biodiversity hotspots, Springer, pp 855–885

    Chapter  Google Scholar 

  • Rueda JL, Urra J, Aguilar R, Angeletti L, Bo M, García-Ruiz C, González-Duarte MM, López E, Madurell T, Maldonado M, Mateo-Ramírez Á, Megina C, Moreira J, Moya F, Ramalho LV, Rosso A, Sitjà C, Taviani M (2019) Cold-water coral associated fauna in the Mediterranean Sea and adjacent areas. In: Orejas C, Jiménez C (eds) Mediterranean cold-water corals: past, present and future. Understanding the deep-sea realms of coral, Springer, pp 295–333

    Chapter  Google Scholar 

  • Stanley GD Jr, Cairns SD (1988) Constructional azooxanthellate coral communities: an overview with implications for the fossil record. Palaios 3:233–242

    Article  Google Scholar 

  • Taviani M, Remia A, Corselli C, Freiwald A, Malinverno E, Mastrototaro F, Savini A, Tursi A (2005) First geo-marine survey of living cold-water Lophelia reefs in the Ionian Sea (Mediterranean basin). Facies 50:409–417

    Article  Google Scholar 

  • Taviani M, Vertino A, López-Correa M, Savini A, De Mol B, Remia A, Montagna P, Angeletti L, Zibrowius H, Alves T, Salomidi M, Ritt B, Henry P (2011) Pleistocene to Recent scleractinian deep-water corals an coral facies in the eastern Mediterranean. Facies 57:579–603

    Article  Google Scholar 

  • Taviani M, Angeletti L, Canese S, Cannas R, Cardone F, Cau A, Cau AB, Follesa MC, Marchese F, Montagna P, Tessarolo C (2017) The “Sardinian cold-water coral province” in the context of the Mediterranean coral ecosystems. Deep-Sea Res II 145:61–78

    Article  Google Scholar 

  • Taviani M, Vertino A, Angeletti L, Montagna P, Remia A (2019) Paleoecology of Mediterranean cold-water corals. In: Orejas C, Jiménez C (eds) Mediterranean cold-water corals: past, present and future. Understanding the deep-sea realms of coral, Springer, pp 15–30

    Chapter  Google Scholar 

  • Teichert C (1958) Cold- and deep-water coral banks. Bull Am Ass Petrol Geol 42:1064–1082

    Google Scholar 

  • Titschack J, Freiwald A (2005) Growth, deposition and facies of Pleistocene bathyal coral communities from Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin Heidelberg, pp 41–59

    Chapter  Google Scholar 

  • Titschack J, Bromley RG, Freiwald A (2005) Plio-Pleistocene cliff-bound, wedge-shaped, warm-temperate carbonate deposits from Rhodes (Greece): sedimentology and facies. Sed Geol 180:29–56

    Article  Google Scholar 

  • Tracey DM, Neil H, Marriott P, Andrews AH, Cailliet GM, Sánchez JA (2007) Age and growth of two genera of deep-sea bamboo corals (family Isididae) in New Zealand waters. Bull Mar Sc 81:393–408

    Google Scholar 

  • Tursi A, Mastrototaro F, Matarrese A, Maiorano P, D’Onghia G (2004) Biodiversity of the white coral reefs in the Ionian Sea (central Mediterranean). Chem Ecol 20:S107–S116

    Article  Google Scholar 

  • Van Morkhoven FPCM, Berggren WA, Edwards AS (1986) Cenozoic Cosmopolitan Deep-water Benthic Foraminifera. Bull Cent Rech Explor-Prod Elf-Aquitaine, Mém 11, Pau

  • Van Rooij D, Huvenne V, Le Guilloux E, Foubert A, Wheeler A, Staelens P, Henriet J-P, The HERMES Belgica GEO Shipboard Party (2007) Deep-water oyster cliffs at La Chapelle Bank (Celtic Margin). EGU, Geoph Res Abstr 9: SRef-ID: 1607-7962/gra/EGU2007-A-08811

  • Van Rooij D, De Mol L, Le Guilloux E, Wisshak M, Huvenne VAI, Moermans RV (2010) Environmental setting of deep-water oysters in the Bay of Biscay. Deep-Sea Res I 157:1561–1572

    Article  Google Scholar 

  • Vera-Peláez JL, Lozano-Francisco MC (2007) Historia evolutiva de los seres vivos que habitaron el Mar de Alborán hace cinco millones de años: bioestratigrafía y biodiversidad. In: Pérez-Navas L, Lozano-Francisco MC, Suárez-Padilla J (eds) Casares. 200 millones de años de historia. Ayuntamiento de Casares and Centro de Ediciones de Diputación de Málaga, CEDMA. 165-213

  • Vertino A, Stolarski J, Bosellini FR, Taviani M (2014) Mediterranean corals through time: from Miocene to Present. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer, Heidelberg, pp 257–274

    Chapter  Google Scholar 

  • Vertino A, Taviani M, Corselli C (2019) Spatio-temporal distribution of Mediterranean cold-water corals. In: Orejas C, Jiménez C (eds) Mediterranean cold-water corals: past, present and future. Understanding the deep-sea realms of coral, Springer, pp 67–83

    Chapter  Google Scholar 

  • Villanueva-Guimerans P, Canudo I (2008) Assemblages of recent benthic foraminifera from the northeastern Gulf of Cádiz. Geogaceta 44:139–142

    Google Scholar 

  • Wheeler AJ, Stadnitskaia A (2011) Benthic deep-sea carbonates: reefs and seeps. In: Hüneke H, Mulder T (eds), Deep-sea sediments. Development in Sedimentology 63:397-455

  • Wienberg C, Titschack J (2017) Framework-forming scleractinian cold-water corals through space and time: a Late Quaternary North Atlantic perspective. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests. The ecology of benthic biodiversity hotspots, Springer, pp 699–732

    Chapter  Google Scholar 

  • Wisshak M, López Correa M, Gofas S, Salas C, Taviani M, Jakobsen J, Freiwald A (2009) Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp. n. From the NE Atlantic. Deep-Sea Res I 66:374–407

    Article  CAS  Google Scholar 

  • Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et del’Atlantique nord-oriental. Mém Inst Océanogr 11:1–227

    Google Scholar 

  • Zibrowius H (1987) Scléractiniaires et polychètes serpulidae des faunes bathyales actuelle et plio-pléistocène de Méditerranée. Doc Trav IGAL 11:255–257

    Google Scholar 

  • Zotano JG (2003) Aproximación geomorfológica al karst de la Sierra de la Utrera (provincia de Málaga). Baet. Est Arte, Geog Hist 25:137–158

    Google Scholar 

Download references

Acknowledgements

We very much appreciate the editorial work done by Dr Mark Vermeij, as well as the thorough review of the manuscript by Drs André Freiwald and Marco Taviani. Their comments and suggestions have substantially improved the quality of the paper. We thank Jodi Eckart for her help correcting the English text. Research by JA has been supported by the research project PGC2018-099391-B-100 of the Spanish Ministerio de Ciencia, Innovación y Competitividad, and the research group RMN190 of the Junta de Andalucía. JNPA was founded by a Marie Skłodowska-Curie Individual fellowship (MSCA-IF-2018, grant agreement No 840675). EM and AS have been supported by the research group RNM276 of the Junta de Andalucía and the Science and Technology Research Centre of University of Huelva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Aguirre.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Morgan S. Pratchett

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre, J., Ocaña, O., Pérez-Asensio, J.N. et al. Mesophotic azooxanthellate coral communities and submarine seascape during the early Pliocene in Manilva Basin (S Spain). Coral Reefs 39, 1739–1752 (2020). https://doi.org/10.1007/s00338-020-02000-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-02000-x

Keywords

Navigation