Skip to main content
Log in

Effect of different molecular architectured POSS-fluoropolymers on their self-assembled hydrophobic coatings

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A total of 1/2/4/6-armed molecular architectured polyhedral oligomeric silsesquioxane (POSS) fluoropolymers were synthesized via atom transfer radical polymerization (ATRP) by linear (L), dicephalus (D), four-arm (T), and six-arm (S) initiators initiating same content of methyl methacrylate (MMA), methacrylate POSS (MA-POSS), and dodecafluoroheptyl methacrylate (DFHM). The obtained L/D/T/S-(PMMA-b-PMAPOSS-b-PDFHM)1/2/4/6 had increased molecular weight with arm increase. Driven by the stereo-hindrance and curvature effects of segments in tetrahydrofuran (THF), they assembled into the decreased spherical core-shell micelles (250–100 nm) with arm increase as PMA-POSS/PDFHM core and PMMA shell. Because of easy surface migration of fluorine-containing groups in small micelles, the casted film by S-(PMMA-b-PMAPOSS-b-PDFHM)6 performed the fluorine-rich (46.44%) and rough (5.41 nm) surface, and therefore with the hydrophobic (112°) and low water adsorption surface (1522 ng/cm2). Also, POSS-fluoropolymers obtained the enhanced thermostability with arm increase. It is believed that this research will provide a bright view for design and application of POSS-fluoropolymers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kanezashi M, Tomarino Y, Nagasawa H, Tsuru T (2019) Tailoring the molecular sieving properties and thermal stability of carbonized membranes containing polyhedral oligomeric silsesquioxane (POSS)-polyimide via the introduction of norbornene. J Membr Sci 582:59–69. https://doi.org/10.1016/j.memsci.2019.04.003

    Article  CAS  Google Scholar 

  2. Leng Y, Liu J, Jiang P, Wang J (2014) POSS-derived mesostructured amphiphilic polyoxometalate-based ionic hybrids as highly efficient epoxidation catalysts. ACS Sustain Chem Eng 3(1):170–176. https://doi.org/10.1021/sc500674q

    Article  CAS  Google Scholar 

  3. Hou H, Li J, Li X, Forth J, Yin J, Jiang X, Helms BA, Russell TP (2019) Interfacial activity of amine-functionalized polyhedral oligomeric silsesquioxanes (POSS): a simple strategy to structure liquids. Angew Chem-Int Edit 58(30):10142–10147. https://doi.org/10.1002/anie.201903420

    Article  CAS  Google Scholar 

  4. Ata S, Dhara P, Mukherjee R, Singha NK (2016) Thermally amendable and thermally stable thin film of POSS tethered poly(methyl methacrylate) (PMMA) synthesized by ATRP. Eur Polym J 75:276–290. https://doi.org/10.1016/j.eurpolymj.2015.12.010

    Article  CAS  Google Scholar 

  5. Guerrero G, Hägg M-B, Kignelman G, Simon C, Peters T, Rival N, Denonville C (2017) Investigation of amino and amidino functionalized polyhedral oligomeric silsesquioxanes (POSS) nanoparticles in PVA-based hybrid membranes for CO2/N2 separation. J Membr Sci 544:161–173. https://doi.org/10.1016/j.memsci.2017.09.014

    Article  CAS  Google Scholar 

  6. Mihelčič M, Gaberšček M, Salzano de Luna M, Lavorgna M, Giuliani C, Di Carlo G, Surca AK (2019) Effect of silsesquioxane addition on the protective performance of fluoropolymer coatings for bronze surfaces. Mater Des 178:107860. https://doi.org/10.1016/j.matdes.2019.107860

    Article  CAS  Google Scholar 

  7. Wang L, Liang J, He L (2014) Superhydrophobic and oleophobic surface from fluoropolymer-SiO2 hybrid nanocomposites. J. Colloid Interface Sci 435:75–82. https://doi.org/10.1016/j.jcis.2014.08.017

    Article  CAS  PubMed  Google Scholar 

  8. Roslizar A, Dottermusch S, Vüllers F, Kavalenka MN, Guttmann M, Schneider M, Paetzold UW, Hölscher H, Richards BS, Klampaftis E (2019) Self-cleaning performance of superhydrophobic hot-embossed fluoropolymer films for photovoltaic modules. Sol Energy Mater Sol Cells 189:188–196. https://doi.org/10.1016/j.solmat.2018.09.017

    Article  CAS  Google Scholar 

  9. Lin J, Chen X, Chen C, Hu J, Zhou C, Cai X, Wang W, Zheng C, Zhang P, Cheng J, Guo Z, Liu H (2018) Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl Mater Interfaces 10(7):6124–6136. https://doi.org/10.1021/acsami.7b16235

    Article  CAS  PubMed  Google Scholar 

  10. Khanjani P, King AWT, Partl GJ, Johansson L-S, Kostiainen MA, Ras RHA (2018) Superhydrophobic paper from nanostructured fluorinated cellulose esters. ACS Appl Mater Interfaces 10(13):11280–11288. https://doi.org/10.1021/acsami.7b19310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soto D, Ugur A, Farnham TA, Gleason KK, Varanasi KK (2018) Short-fluorinated iCVD coatings for nonwetting fabrics. Adv. Funct. Mater 28(33):1707355. https://doi.org/10.1002/adfm.201707355

    Article  CAS  Google Scholar 

  12. Wang J, He L, Pan A, Zhao Y (2018) Hydrophobic and durable adhesive coatings fabricated from fluorinated glycidyl copolymers grafted on SiO2 nanoparticles. Adv Funct Mater 2(1):617–626. https://doi.org/10.1021/acsanm.8b02283

    Article  CAS  Google Scholar 

  13. Yang M, Liu W, Jiang C, He S, Xie Y, Wang Z (2018) Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process. Carbohydr Polym 197:75–82. https://doi.org/10.1016/j.carbpol.2018.05.075

    Article  CAS  PubMed  Google Scholar 

  14. Zheng P, Li X, Wu J, Wang N, Li J, An Q (2018) Enhanced butanol selectivity of pervaporation membrane with fluorinated monolayer on polydimethylsiloxane surface. J Membr Sci 548:215–222. https://doi.org/10.1016/j.memsci.2017.11.015

    Article  CAS  Google Scholar 

  15. Skrzypiec M, Wamke A, Dopierała K, Prochaska K (2018) Effect of chemical structure of fluorinated polyhedral oligomeric silsesquioxanes on formation of Langmuir monolayers and Langmuir-Blodgett films. Colloid Surf A-Physicochem Eng Asp 556:140–147. https://doi.org/10.1016/j.colsurfa.2018.08.033

    Article  CAS  Google Scholar 

  16. Lyu Z, An Q, Qin P, Li W, Wang X (2019) Preparation and characterization of POSS-containing poly(perfluoropolyether)methacrylate hybrid copolymer and its superhydrophobic coating performance. RSC Adv 9(9):4765–4770. https://doi.org/10.1039/c8ra10490e

    Article  CAS  Google Scholar 

  17. John L, Janeta M, Szafert S (2018) Synthesis of cubic spherosilicates for self-assembled organic–inorganic biohybrids based on functionalized methacrylates. New J Chem 42(1):39–47. https://doi.org/10.1039/c7nj02533e

    Article  CAS  Google Scholar 

  18. Ata S, Banerjee SL, Singha NK (2019) Self-assembly behavior of POSS based ABA type amphiphilic tri-block copolymer prepared via ATRP. Eur Polym J 118:10–16. https://doi.org/10.1016/j.eurpolymj.2019.05.027

    Article  CAS  Google Scholar 

  19. Wang J, Zaidi SSA, Hasnain A, Guo J, Ren X, Xia S, Zhang W, Feng Y (2018) Multitargeting peptide-functionalized star-shaped copolymers with Comblike structure and a POSS-core to effectively transfect endothelial cells ACS biomater. Sci Eng 4(6):2155–2168. https://doi.org/10.1021/acsbiomaterials.8b00235

    Article  CAS  Google Scholar 

  20. Chi H, Wang M, Xiao Y, Wang F, K.S J (2018) Self-assembly and applications of amphiphilic hybrid POSS copolymers. Molecules 23(10). https://doi.org/10.3390/molecules23102481

  21. Jia L, Ma J, Gao D, Tait WRT, Sun L (2019) A star-shaped POSS-containing polymer for cleaner leather processing. J Hazard Mater 361:305–311. https://doi.org/10.1016/j.jhazmat.2018.08.093

    Article  CAS  PubMed  Google Scholar 

  22. Pramanik NB, Mondal P, Mukherjee R, Singha NK (2017) A new class of self-healable hydrophobic materials based on ABA triblock copolymer via RAFT polymerization and Diels-Alder "click chemistry". Polymer 119:195–205. https://doi.org/10.1016/j.polymer.2017.05.003

  23. Fan L, Wang X, Cao Q, Yang Y, Wu D (2019) POSS-based supramolecular amphiphilic zwitterionic complexes for drug delivery. Biomater. Sci 7(5):1984–1994. https://doi.org/10.1039/c9bm00125e

    Article  CAS  PubMed  Google Scholar 

  24. Xie M, Ge J, Lei B, Zhang Q, Chen X, Ma PX (2015) Star-shaped, biodegradable, and elastomeric PLLA-PEG-POSS hybrid membrane with biomineralization activity for guiding bone tissue regeneration. Biomater Sci 15(12):1656–1662. https://doi.org/10.1002/mabi.201500237

    Article  CAS  Google Scholar 

  25. Zhang M, Ma X, Liu Y, Ma J, Chen F, Zhang Q (2018) High-performance electrospun POSS-(PMMA46)8/PVDF hybrid gel polymer electrolytes with PP support for Li-ion batteries. Ionics 25(6):2595–2605. https://doi.org/10.1007/s11581-018-2749-2

    Article  CAS  Google Scholar 

  26. Xu H, Wang A, Liu X, Feng D, Wang S, Chen J, An Y, Zhang L (2018) A new fluorine-containing star-branched polymer as electrolyte for all-solid-state lithium-ion batteries. Polymer 146:249–255. https://doi.org/10.1016/j.polymer.2018.05.045

    Article  CAS  Google Scholar 

  27. Whitesides GM, Sadowski JS, Lilburn J (1974) Copper(I) alkoxides. Synthesis, reactions, and thermal decomposition. J Am Chem Soc 96(9):141–143. https://doi.org/10.1021/ja00816a027

    Article  Google Scholar 

  28. Niu M, He L, Liang J, Pan A, Zhao X (2014) Effect of side chains and solvents on the film surface of linear fluorosilicone pentablock copolymers. Prog Org Coat 77(11):1603–1612. https://doi.org/10.1016/j.porgcoat.2014.05.008

    Article  CAS  Google Scholar 

  29. Wang J, Wang X, Yang F, Shen H, You Y, Wu D (2015) Effect of topological structures on the self-assembly behavior of supramolecular amphiphiles. Langmuir 31(51):13834–13841. https://doi.org/10.1021/acs.langmuir.5b03823

    Article  CAS  PubMed  Google Scholar 

  30. Xu Y, He K, Wang H, Li M, Shen T, Liu X, Yuan C, Dai L (2018) Self-assembly behavior and pH-stimuli-responsive property of POSS-based amphiphilic block copolymers in solution. Micromachines 9(6). https://doi.org/10.3390/mi9060258

  31. Zhang K, Li X, Zhao Y, Zhu K, Li Y, Tao C, Yuan X (2016) UV-curable POSS-fluorinated methacrylate diblock copolymers for icephobic coatings. Prog Org Coat 93:87–96. https://doi.org/10.1016/j.porgcoat.2016.01.005

    Article  CAS  Google Scholar 

  32. Pan A, He L, Wang L, Xi N (2016) POSS-based diblock fluoropolymer for self-assembled hydrophobic coatings. Prog Org Coat 3(2):325–334. https://doi.org/10.1016/j.matpr.2016.01.077

    Article  Google Scholar 

  33. Varughese SM, Bhandaru N (2020) Durability of submerged hydrophobic surfaces. Soft Matter 16:1692–1701. https://doi.org/10.1039/c9sm01942a

    Article  CAS  PubMed  Google Scholar 

  34. Dopierala K, Maciejewski H, Karasiewicz J, Prochaska K (2013) Alkyl- and fluoroalkyltrialkoxysilanes for wettability modification. Appl Surf Sci 283:453–459. https://doi.org/10.1016/j.apsusc.2013.06.130

    Article  CAS  Google Scholar 

  35. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta 440(1):36–42. https://doi.org/10.1016/j.tca.2005.10.006

    Article  CAS  Google Scholar 

  36. Zhang Q, Zhan X, Chen F, Shi Y, Wang Q (2007) Block copolymers of dodecafluoroheptyl methacrylate and butyl methacrylate by RAFT miniemulsion polymerization. J Polym Sci Pol Chem 45(9):1585–1594. https://doi.org/10.1002/pola.21930

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude for the MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering of Xi’an Jiaotong University.

Funding

This work has been financially supported by the National Natural Science Foundation of China (NSFC Grants Nos. 51873173 and 51573145) and the National Key Research and Development Project (No. 2019YFC1520504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., He, L., Huang, S. et al. Effect of different molecular architectured POSS-fluoropolymers on their self-assembled hydrophobic coatings. Colloid Polym Sci 298, 1559–1569 (2020). https://doi.org/10.1007/s00396-020-04739-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04739-9

Keywords

Navigation